Skip to main content

Advertisement

Log in

Assessment of comprehensiveness of soil conservation measures using the DPSIR framework

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The assessment of comprehensiveness of soil conservation measures (SCMs), along with economic, social, and environmental assessments of these projects, is a prerequisite for good governance in a watershed. This study was conducted using the cause-and-effect framework of DPSIR (Driver-Pressure-State-Impact-Response) to assess the comprehensiveness of SCMs in reducing the soil erosion potential of the Kond watershed area and its adverse impacts. Horticultural, mining, and ranching activities; population growth; and road network development were identified as the most important driving forces of the watershed. After determining the indicators, the integrated index was calculated based on weight calculation and standardization of values to detect changes before and after the implementation of SCMs. The results showed a decrease in soil erosion and the corresponding adverse impacts in 2019 compared with the base year, 1997, so that according to the integrated index, the soil erosion status and related impacts have decreased by 16 and 35%, respectively. Despite this decline, the watershed still has a high rate of soil erosion (26.27 t ha−1 year−1). This is because SCMs are more focused on improving the state and impacts, and there are no necessary managerial responses to the components of the driving forces and pressures. Given that the proactive approach has less contribution than the reactive approach in SCMs, in addition to the reactive approach, it is necessary to pay more attention to the proactive approach to reduce the soil erosion rate of the watershed and decrease the relevant negative impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agyemang, I., McDonald, A., & Carver, S. (2007). Application of the DPSIR framework to environmental degradation assessment in northern Ghana. In Natural Resources Forum, Oxford: Blackwell Publishing Ltd., 31(3), 212-225.

  • Akbari, M., Memarian, H., Neamatollahi, E., Shalamzari, M. J., Noughani, M. A., & Zakeri, D. (2020). Prioritizing policies and strategies for desertification risk management using MCDM–DPSIR approach in northeastern Iran. Environment, Development and Sustainabilityhttps://doi.org/10.1007/s10668-020-00684-3.

  • Alfsen, K. H., De Franco, M. A., Glomsrød, S., & Johnsen, T. (1996). The cost of soil erosion in Nicaragua. Ecological Economics, 16(2), 129–145.

    Article  Google Scholar 

  • Aljoufie, M., Zuidgeest, M. H. P., Brussel, M. J. G., & Van Maarseveen, M. F. A. M. (2011). Urban growth and transport understanding the spatial temporal relationship. Urban transport XVII: Urban transport and the environment in the 21st century (pp. 315–328). Southampton: WIT press.

    Google Scholar 

  • Ananda, J., & Herath, G. (2003). Soil erosion in developing countries: a socio-economic appraisal. Journal of Environmental Management, 68(4), 343–353.

    Article  Google Scholar 

  • Baldwin, C., Lewison, R. L., Lieske, S. N., Beger, M., Hines, E., Dearden, P., Rudd, M. A., Jones, C., Satumanatpan, S., & Junchompoo, C. (2016). Using the DPSIR framework for transdisciplinary training and knowledge elicitation in the Gulf of Thailand. Ocean and Coastal Management, 134, 163–172.

    Article  Google Scholar 

  • Boardman, J., Vandaele, K., Evans, R., & Foster, I. D. (2019). Off-site impacts of soil erosion and runoff: why connectivity is more important than erosion rates. Soil Use and Management, 35(2), 245–256.

    Article  Google Scholar 

  • Boberg, J. (2005). Liquid assets: how demographic changes and water management policies affect fresh water resources (p. 107). Santa Monica: RAND corporation.

    Google Scholar 

  • Booth, P. (2009). Managing land-use change. Land Use Policy, 26, 154–159.

    Article  Google Scholar 

  • Carr, E. R., Wingard, P. M., Yorty, S. C., Thompson, M. C., Jensen, N. K., & Roberson, J. (2007). Applying DPSIR to sustainable development. International Journal of Sustainable Development and World Ecology, 14(6), 543–555.

    Article  Google Scholar 

  • Chen, S. C., & Wu, C. Y. (2016). Annual landslide risk and effectiveness of risk reduction measures in Shihmen watershed, Taiwan. Landslides, 13(3), 551–563.

    Article  Google Scholar 

  • Cooper, P. (2012). The DPSWR social-ecological accounting framework: notes on its definition and application. Policy brief, 3.

  • Cooper, P. (2013). Socio-ecological accounting: DPSWR, a modified DPSIR framework, and its application to marine ecosystems. Ecological Economics, 94, 106–115.

    Article  Google Scholar 

  • Dempsey, J. A., Plantinga, A. J., Kline, J. D., Lawler, J. J., Martinuzzi, S., Radeloff, V. C., & Bigelow, D. P. (2017). Effects of local land-use planning on development and disturbance in riparian areas. Land Use Policy, 60, 16–25.

    Article  Google Scholar 

  • Dissanayake, C. B., & Rupasinghe, M. S. (1996). Environmental impact of mining, erosion and sedimentation in Sri Lanka. International Journal of Environmental Studies, 51(1), 35–50.

    Article  Google Scholar 

  • EEA. (1995). Europe’s environment: the dobris assessment (p. 8). Copenhagen: European Environmental Agency.

    Google Scholar 

  • EEA, (1999a). Environment in the European union at the turn of the century. Technical report No. 2. European Environment Agency, Copenhagen.

  • EEA, (1999b). Environmental indicators: typology and overview. Technical report No. 25. European Environment Agency, Copenhagen.

  • EEA, (2000). Down to earth: soil degradation and sustainable development in Europe. Environmental issue series, No 16. European Environment Agency, Copenhagen, 32 pp.

  • ELME, (2007). European Lifestyles and Marine Ecosystems, Description of Work. European Union, 85 pp.

  • Faiz, A., Faiz, A., Wang, W., & Bennett, C. (2012). Sustainable rural roads for livelihoods and livability. Procedia-Social and Behavioral Sciences, 53, 1–8.

    Article  Google Scholar 

  • Fukubayashi, Y., & Kimura, M. (2014). Improvement of rural access roads in developing countries with initiative for self-reliance of communities. Soils and Foundations, 54(1), 23–35.

    Article  Google Scholar 

  • Gabrielsen, P., & Bosch, P. (2003). Environmental indicators: typology and use in reporting. EEA internal working paper. 20 pp.

  • Gallay, M., Martinez, J. M., Allo, S., Mora, A., Cochonneau, G., Gardel, A., Doudou, J. C., Sarrazin, M., Chow-Toun, F., & Laraque, A. (2018). Impact of land degradation from mining activities on the sediment fluxes in two large rivers of French Guiana. Land Degradation & Development, 29(12), 4323–4336.

    Article  Google Scholar 

  • Gari, S. R., Newton, A., & Icely, J. D. (2015). A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean and Coastal Management, 103, 63–77.

    Article  Google Scholar 

  • Gari, S. R., Ortiz Guerrero, C. E., A-Uribe, B., Icely, J. D., & Newton, A. (2018). A DPSIR-analysis of water uses and related water quality issues in the Colombian Alto and Medio Dagua Community Council. Water Science, 32(2), 318–337.

    Article  Google Scholar 

  • General Department of Natural Resources. (2019). Soil science and land suitability report (p. 120). Tehran: General Department of Natural Resources.

    Google Scholar 

  • Gessesew, W. S. (2017). Application of DPSIR framework for assessment of land degradation: a review. Approaches in Poultry, Dairy & Veterinary Sciences, 1(5), 88–94.

    Google Scholar 

  • Gobin, A., Govers, G., Jones, R., Kirkby, M., Kosmas, C., & Gentile, A. R. (2003). Assessment and reporting on soil erosion. European Environment Agency, Technical Report, 94, 103.

    Google Scholar 

  • Gobin, A., Jones, R., Kirkby, M., Campling, P., Govers, G., Kosmas, C., & Gentile, A. R. (2004). Indicators for pan-European assessment and monitoring of soil erosion by water. Environmental Science & Policy, 7(1), 25–38.

    Article  Google Scholar 

  • Gobin, A., Hien, L. T. T., Hai, L. T., Linh, P. H., Thang, N. N., & Vinh, P. Q. (2020). Adaptation to land degradation in Southeast Vietnam. Land, 9(9), 302–327.

    Article  Google Scholar 

  • Hammond, M., Chen, A. S., Batica, J., Butler, D., Djordjević, S., Gourbesville, P., Manojlović, N., Mark, O., & Veerbeek, W. (2018). A new flood risk assessment framework for evaluating the effectiveness of policies to improve urban flood resilience. Urban Water Journal, 15(5), 427–436.

    Article  Google Scholar 

  • Harte, J. (2007). Human population as a dynamic factor in environmental degradation. Population and Environment, 28(4-5), 223–236.

    Article  Google Scholar 

  • Hashemi, M. S., Zare, F., Bagheri, A., & Moridi, A. (2014). Flood assessment in the context of sustainable development using the DPSIR framework. International Journal of Environmental Protection and Policy, 2(2), 41–49.

    Article  Google Scholar 

  • Hazbavi, Z., Sadeghi, S. H., Gholamalifard, M., & Davudirad, A. A. (2020). Watershed health assessment using the pressure–state–response (PSR) framework. Land Degradation & Development, 31(1), 3–19.

    Article  Google Scholar 

  • Jaafari, A., Najafi, A., Rezaeian, J., & Sattarian, A. (2015). Modeling erosion and sediment delivery from unpaved roads in the north mountainous forest of Iran. GEM-International Journal on Geomathematics, 6(2), 343–356.

    Article  Google Scholar 

  • Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design, 65, 335–342.

    Article  Google Scholar 

  • Jain, P., & Jain, P. (2016). Population and development: impacts on environmental performance. Chinese Journal of Population Resources and Environment, 14(3), 208–214.

    Article  Google Scholar 

  • Jia, X., O'Connor, D., Hou, D., Jin, Y., Li, G., Zheng, C., Ok, Y. S., Tsang, D. C., & Luo, J. (2019). Groundwater depletion and contamination: spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 672, 551–562.

    Article  CAS  Google Scholar 

  • Jordan, A., & Martinez-Zavala, L. (2008). Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management, 255(3-4), 913–919.

    Article  Google Scholar 

  • Jorgensen, S. E., Loffler, H., Rast, W. & Straskraba, M. (2005). Lake and reservoir management, Volume 54 (Developments in Water Science). Amsterdam: Elsevier Publishers.

  • Karageorgis, A. P., Skourtos, M. S., Kapsimalis, V., Kontogianni, A. D., Skoulikidis, N. T., Pagou, K., Nikolaidis, N. P., Drakopoulou, P., Zanou, B., Karamanos, H., & Levkov, Z. (2005). An integrated approach to watershed management within the DPSIR framework: Axios River catchment and Thermaikos Gulf. Regional Environmental Change, 5(2-3), 138–160.

    Article  Google Scholar 

  • Karimi, K., & Karami Dehkordi, E. (2016). Exploring the factors affecting imbalance of livestock numbers and rangeland carrying capacity and evaluating the impacts of range management projects on forage production: a case study in the Mahneshan Township. Rangeland, 10(1), 11–26.

    Google Scholar 

  • Kelble, C. R., Loomis, D. K., Lovelace, S., Nuttle, W. K., Ortner, P. B., Fletcher, P., et al. (2013). The EBMDPSER conceptual model: integrating ecosystem services into the DPSIR framework. PloS one, 8(8), e70766.

    Article  CAS  Google Scholar 

  • Khajuria, A., & Ravindranath, N. H. (2012). Climate change vulnerability assessment: approaches DPSIR framework and vulnerability index. Journal of Earth Science Climatic Change, 3, 109.

    Article  Google Scholar 

  • Laker, M. C. (2004). Advances in soil erosion, soil conservation, land suitability evaluation and land use planning research in South Africa, 1978–2003. South African Journal of Plant and Soil, 21(5), 345–368.

    Article  CAS  Google Scholar 

  • Lal, R. (1998). Soil erosion impact on agronomic productivity and environment quality. Critical Reviews in Plant Sciences, 17(4), 319–464.

    Article  Google Scholar 

  • Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519–539.

    Article  Google Scholar 

  • Lal, R. (2019). Accelerated soil erosion as a source of atmospheric CO2. Soil and Tillage Research, 188, 35–40.

    Article  Google Scholar 

  • Lal, R., den Biggelaar, C., & Wiebe, K. D. (2003). Measuring on-site and off-site effects of soil erosion on productivity and environmental quality. In agricultural impacts on soil erosion and soil biodiversity: developing indicators for policy analyses. Proceeding OECD expert meeting, 75-86.

  • Laperche, V., Hellal, J., Maury-Brachet, R., Joseph, B., Laporte, P., Breeze, D., & Blanchard, F. (2014). Regional distribution of mercury in sediments of the main rivers of French Guiana (Amazonian basin). SpringerPlus, 3(1), 322.

    Article  Google Scholar 

  • Lin, Y. C., Huang, S. L., & Budd, W. W. (2013). Assessing the environmental impacts of high-altitude agriculture in Taiwan: a Driver-Pressure-State-Impact-Response (DPSIR) framework and spatial emergy synthesis. Ecological Indicators, 32, 42–50.

    Article  Google Scholar 

  • Loures, L. C. (2019). Introductory chapter: land-use planning and land-use change as catalysts of sustainable development. Land Use-Assessing the Past, Envisioning the Future. IntechOpen.

  • Ma, X., Zhu, X., & Zhao, R. (2009). Index system of DPSIR framework for soil erosion in Yunnan Province. Environmental Science Survey, 28, 1–5.

    Google Scholar 

  • Maxim, L., Spangenberg, J. H., & O'Connor, M. (2009). An analysis of risks for biodiversity under the DPSIR framework. Ecological Economics, 69(1), 12–23.

    Article  Google Scholar 

  • Mbaya, R. P. (2013). Land degradation due to mining: the gunda scenario. International Journal of Geography and Geology, 2(12), 144–158.

    Article  Google Scholar 

  • McDowell, R. W., Snelder, T., Harris, S., Lilburne, L., Larned, S. T., Scarsbrook, M., Curtis, A., Holgate, B., Phillips, J., & Taylor, K. (2018). The land use suitability concept: introduction and an application of the concept to inform sustainable productivity within environmental constraints. Ecological Indicators, 91, 212–219.

    Article  Google Scholar 

  • Meyer, W. B., & Turner, B. L. (1992). Human population growth and global land use/cover change. Annual Review of Ecology and Systematics, 23(1), 39–61.

    Article  Google Scholar 

  • Mosaffaie, J., Nikkami, D., & Salehpour Jam, A. (2019). Watershed management in Iran: history, evolution and future needs. Journal of Watershed Management and Engineering, 11(2), 283–300.

    Google Scholar 

  • Mosaffaie, J., Salehpour Jam, A., Tabatabaei, M. R., & Kousari, M. R. (2020). Trend assessment of the watershed health based on DPSIR framework. Land Use Policy, 100, 104911.

    Article  Google Scholar 

  • Mostafa, M., Shataee, J. S., Lotfalian, M., & Sadoddin, A. (2016). Comparison of geometric characterizes Chehel-chay forest watershed roads with rural road standards with an emphasis of run off product. Journal of Wood and Forest Science and Technology, 23(2), 123–145.

    Google Scholar 

  • Najafi, B., Shirvanian, A., & Haghshenas, T. (2008). Factors affecting pasture and meat production imbalance in Fars province: a case study of Koohnamak pastures in Darab. Journal of Crop Production and Processing, 12(45), 673–683.

    Google Scholar 

  • Nikkami, D., Jafari Ardakani, A., Shadfar, S. (2020). Preparation and integration of digital maps and data of watershed and development of spatial, temporal and thematic databases related to erosion and sedimentation in the seventh order basins of Iran. Reort. Soil Conservation and Management Research Institute, Tehran, IRAN.

  • Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., Lee, S., Melesse, M., & A. (2019). Landslide susceptibility mapping using different GIS-based bivariate models. Water, 11(7), 1402.

    Article  Google Scholar 

  • Oesterwind, D., Rau, A., & Zaiko, A. (2016). Drivers and pressures–untangling the terms commonly used in marine science and policy. Journal of Environmental Management, 181, 8–15.

    Article  Google Scholar 

  • O'Higgins, T., Farmer, A., Daskalov, G., Knudsen, S., & Mee, L. (2014). Achieving good environmental status in the Black Sea: scale mismatches in environmental management. Ecology and Society, 19(3), 54.

    Article  Google Scholar 

  • Oldeman, L. R., Hakkeling, R. T. A., & Sombroek, W. G. (1991). World map of status of human-induced soil degradation: an explanatory note. Wageningen: ISRIC, and Nairobi: UNEP. 27 pp.

  • Papathanasiou, J., & Ploskas, N. (2018). Multiple criteria decision aid, Volume 136 (Springer Optimization and Its Applications). Switzerland: Springer, Cham.

  • Pech, S., & Sunada, K. (2008). Population growth and natural resources pressures in the Mekong river basin. Ambio: A Journal of the Human Environment, 37(3), 219–224.

    Article  Google Scholar 

  • Persson, C. (2013). Deliberation or doctrine? Land use and spatial planning for sustainable development in Sweden. Land Use Policy, 34, 301–313.

    Article  Google Scholar 

  • Pimentel, D. (2006). Soil erosion: a food and environmental threat. Environment, Development and Sustainability, 8(1), 119–137.

    Article  Google Scholar 

  • Pimentel, D., & Burgess, M. (2013). Soil erosion threatens food production. Agriculture, 3(3), 443–463.

    Article  Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123.

    Article  CAS  Google Scholar 

  • Pirrone, N., Trombino, G., Cinnirella, S., Algieri, A., Bendoricchio, G., & Palmeri, L. (2005). The Driver-Pressure-State-Impact-Response (DPSIR) approach for integrated catchment-coastal zone management: preliminary application to the Po catchment-Adriatic Sea coastal zone system. Regional Environmental Change, 5(2-3), 111–137.

    Article  Google Scholar 

  • Porta, J., & Claret, R. M. P. (2011). DPSIR analysis of land and soil degradation in response to changes in land use. Spanish Journal of Soil Science, 1(1), 100–115.

    Google Scholar 

  • Ramos-Scharrón, C. E., & LaFevor, M. C. (2016). The role of unpaved roads as active source areas of precipitation excess in small watersheds drained by ephemeral streams in the Northeastern Caribbean. Journal of Hydrology, 533, 168–179.

    Article  Google Scholar 

  • Rocha-Nicoleite, E., Overbeck, G. E., & Müller, S. C. (2017). Degradation by coal mining should be priority in restoration planning. Perspectives in Ecology and Conservation, 15(3), 202–205.

    Article  Google Scholar 

  • Saaty, T.L. (2000). Fundamentals of decision making and priority theory with the analytic hierarchy process (Vol. 6). RWS publications.

  • Saaty, T. L. (2012). Decision making for leaders: the analytic hierarchy process for decisions in a complex world (Third revised edition). Pittsburgh: RWS Publications.

    Google Scholar 

  • Sadoddin, A., Sheikh, V. B., Ownegh, M., Najafi Nejad, A., & Sadeghi, S. H. R. (2016). Development of a national mega research project on the integrated watershed management for Iran. Environmental Resources Research, 4(2), 231–238.

    Google Scholar 

  • Salehpour Jam, A., Tabatabaei, M., & Sarreshtehdari, A. (2017). Pedological criterion affecting desertification in alluvial fans using AHP-ELECTRE I technique (Case Study: Southeast of Rude-Shoor Watershed Area). ECOPERSIA, 5(1), 1711–1729.

    Article  Google Scholar 

  • Salehpour Jam, A., Peyrowan, H. R., Tabatabaei, M. R., Sarreshtehdari, A., & Mosaffaie, J. (2020). An assessment of the land degradation potential using the TOPSIS method (case study: rangelands overlooking the city of Eshtehard, the province of Alborz). Watershed Management Research, 32(4), 79–93.

    Google Scholar 

  • Sarmin, N. S., Hasmadi, I. M., Pakhriazad, H. Z., & Khairil, W. A. (2016). The DPSIR framework for causes analysis of mangrove deforestation in Johor, Malaysia. Environmental Nanotechnology, Monitoring & Management, 6, 214–218.

    Article  Google Scholar 

  • Scholten, T., & Seitz, S. (2019). Soil erosion and land degradation. Soil Systems, 3(4), 68–70.

    Article  Google Scholar 

  • Semeoshenkova, V., Newton, A., Rojas, M., Piccolo, M. C., Bustos, M. L., Cisneros, M. A. H., & Berninsone, L. G. (2017). A combined DPSIR and SAF approach for the adaptive management of beach erosion in Monte Hermoso and Pehuen Co (Argentina). Ocean and Coastal Management, 143, 63–73.

    Article  Google Scholar 

  • Shao, C., Guan, Y., Chu, C., Shi, R., Ju, M., & Shi, J. (2014). Trends analysis of ecological environment security based on DPSIR model in the coastal zone: a survey study in Tianjin, China. International Journal of Environmental Research, 8(3), 765–778.

    Google Scholar 

  • Shi, G., Shan, J., Din, L., Ye, P., Li, Y., & Jiang, N. (2019). Urban road network expansion and its driving variables: a case study of Nanjing City. International Journal of Environmental Research and Public Health, 16(13), 2318.

    Article  Google Scholar 

  • Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7-8), 801–813.

    Article  Google Scholar 

  • Singh, G., Babu, R., Narain, P., Bhushan, L. S., & Abrol, I. P. (1992). Soil erosion rates in India. Journal of Soil and Water Conservation, 47(1), 97–99.

    Google Scholar 

  • Skondras, N. A., & Karavitis, C. A. (2015). Evaluation and comparison of DPSIR framework and the combined SWOT-DPSIR analysis (CSDA) approach: towards embracing complexity. Global NEST Journal, 17(1), 198–209.

    Article  Google Scholar 

  • Sun, S., Wang, Y., Liu, J., Cai, H., Wu, P., Geng, Q., & Xu, L. (2016). Sustainability assessment of regional water resources under the DPSIR framework. Journal of Hydrology, 532, 140–148.

    Article  Google Scholar 

  • Svarstad, H., Petersen, L. K., Rothman, D., Siepel, H., & Wätzold, F. (2008). Discursive biases of the environmental research framework DPSIR. Land Use Policy, 25(1), 116–125.

    Article  Google Scholar 

  • Ullah, K. M., & Mansourian, A. (2016). Evaluation of land suitability for urban land-use planning: case study Dhaka city. Transactions in GIS, 20(1), 20–37.

    Article  Google Scholar 

  • Van Diepen, C. A., Van Keulen, H., Wolf, J., & Berkhout, J. A. A. (1991). Land evaluation: from intuition to quantification. Advances in Soil Sciences, 15, 139–204.

    Article  Google Scholar 

  • Van Leeuwen, C. C., Cammeraat, E. L., de Vente, J., & Boix-Fayos, C. (2019). The evolution of soil conservation policies targeting land abandonment and soil erosion in Spain: a review. Land Use Policy, 83, 174–186.

    Article  Google Scholar 

  • Wairiu, M. (2017). Land degradation and sustainable land management practices in pacific island countries. Regional Environmental Change, 17(4), 1053–1064.

    Article  Google Scholar 

  • Wang, F., Mu, X., Li, R., Fleskens, L., Stringer, L. C., & Ritsema, C. J. (2015). Co-evolution of soil and water conservation policy and human–environment linkages in the Yellow River Basin since 1949. Science of the Total Environment, 508, 166–177.

    Article  CAS  Google Scholar 

  • Wang, W., Sun, Y., & Wu, J. (2018). Environmental warning system based on the DPSIR model: a practical and concise method for environmental assessment. Sustainability, 10(6), 1728.

    Article  Google Scholar 

  • Wantzen, K. M., & Mol, J. H. (2013). Soil erosion from agriculture and mining: a threat to tropical stream ecosystems. Agriculture, 3(4), 660–683.

    Article  Google Scholar 

  • Wascher, D. M. (2004). Landscape-indicator development: steps towards a European approach. Volume, 4, pp. 237-252.

  • Winslow, M. D., Vogt, J. V., Thomas, R. J., Sommer, S., Martius, C., & Akhtar-Schuster, M. (2011). Science for improving the monitoring and assessment of dryland degradation. Land Degradation & Development, 22(2), 145–149.

    Article  Google Scholar 

  • Wuepper, D., Borrelli, P., & Finger, R. (2020). Countries and the global rate of soil erosion. Nature Sustainability, 3(1), 51–55.

    Article  Google Scholar 

  • Wynants, M., Kelly, C., Mtei, K., Munishi, L., Patrick, A., Rabinovich, A., Nasseri, M., Gilvear, D., Roberts, N., Boeckx, P., & Wilson, G. (2019). Drivers of increased soil erosion in east Africa s agro-pastoral systems: changing interactions between the social, economic and natural domains. Regional Environmental Change, 19, 1909–1921.

    Article  Google Scholar 

  • Yu, D., Xie, P., Dong, X., Su, B., Hu, X., Wang, K., & Xu, S. (2018). The development of land use planning scenarios based on land suitability and its influences on eco-hydrological responses in the upstream of the Huaihe River basin. Ecological Modelling, 373, 53–67.

    Article  Google Scholar 

  • Zare, F., Elsawah, S., Bagheri, A., Nabavi, E., & Jakeman, A. J. (2019). Improved integrated water resource modelling by combining DPSIR and system dynamics conceptual modelling techniques. Journal of Environmental Management, 246, 27–41.

    Article  Google Scholar 

  • Zhang, H., & Zhuang, L. (2019). The impact of soil erosion on internal migration in China. PLoS One, 14(4), 1–17.

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted as a research project supported by the Soil Conservation and Watershed Management Research Institute (SCWMRI). The authors sincerely appreciate all the officials and specialists of the organizations and offices of Tehran province to prepare data. The authors are also grateful to the anonymous referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Salehpour Jam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehpour Jam, A., Mosaffaie, J. & Tabatabaei, M.R. Assessment of comprehensiveness of soil conservation measures using the DPSIR framework. Environ Monit Assess 193, 42 (2021). https://doi.org/10.1007/s10661-020-08785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08785-2

Keywords

Navigation