Skip to main content

Advertisement

Log in

Bird feathers are potential biomonitors for airborne elemental carbon

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Birds can serve as effective biomonitors of air pollution, yet few studies have quantified external particulate matter accumulation on bird feathers. Biomonitoring of airborne elemental carbon (EC) is of critical significance because EC is a component of particulate matter with adverse effects on air quality and human health. To assess their effectiveness for use in EC monitoring, we compared EC accumulation on bird feathers at two sites that differed in vehicular traffic volume in an urban environment within the Dallas-Fort Worth Metropolitan Area, USA. Moulted flight feathers from domestic chickens were experimentally exposed to ambient EC pollution for 5 days in two urban microenvironments 1.5 km distant from each other that differed in traffic volume––adjacent to an interstate highway and a university campus bus stop. Feathers near the highway accumulated approximately eight times more EC (307 ± 34 μg m−2 day−1), on average, than feathers near the bus stop (40 ± 9 μg m−2 day−1). These findings indicate that EC accumulation on feathers varies over short distances within urban areas and that bird feathers potentially can be used for biomonitoring airborne EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

The dataset related to this article will be hosted on the Knowledge Network for Biocomplexity.

References

  • Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, R. C. H., & Hamburg, S. P. (2017). High-resolution air pollution mapping with Google street view cars: exploiting big data. Environmental Science & Technology, 51(12), 6999–7008.

    Article  CAS  Google Scholar 

  • Barrett, T. E., Ponette-González, A. G., Rindy, J. E., & Weathers, K. C. (2019). Wet deposition of black carbon: a synthesis. Atmospheric Environment, 213, 558–567.

    Article  CAS  Google Scholar 

  • Borghesi, F., Dinelli, E., Migani, F., Béchet, A., Rendó-Martos, M., Amat, J. A., Sommer, S., & Gillingham, M. A. F. (2016). Assessing environmental pollution in birds: a new methodological approach for interpreting bioaccumulation of trace elements in feather shafts using geochemical sediment data. Methods in Ecology and Evolution, 8, 96–108.

    Article  Google Scholar 

  • Bortolotti, G. R. (2010). Flaws and pitfalls in the chemical analysis of feathers: bad news–good news for avian chemoecology and toxicology. Ecological Applications, 20(6), 1766–1774.

    Article  Google Scholar 

  • Cai, F., & Calisi, R. M. (2016). Seasons and neighborhoods of high lead toxicity in New York City: the feral pigeon as a bioindicator. Chemosphere, 161, 274–279.

    Article  CAS  Google Scholar 

  • Cai, M., Xin, Z., & Yu, X. (2017). Spatio-temporal variations in PM leaf deposition: a meta-analysis. Environmental Pollution, 231(1), 207–218.

    Article  CAS  Google Scholar 

  • Cardiel, I. E., Taggart, M. A., & Mateo, R. (2011). Using Pb–Al ratios to discriminate between internal and external deposition of Pb in feathers. Ecotoxicology and Environmental Safety, 74(4), 911–917.

    Article  CAS  Google Scholar 

  • Carneiro, M., Colaço, B., Colaço, J., Faustino-Rocha, A. I., Colaço, A., Lavin, S., & Oliveira, P. A. (2016). Biomonitoring of metals and metalloids with raptors from Portugal and Spain: a review. Environmental Reviews, 24(1), 63–83.

    Article  CAS  Google Scholar 

  • Caubel, J. J., Cados, T. E., Preble, C. V., & Kirchstetter, T. W. (2019). A distributed network of 100 black carbon sensors for 100 days of air quality monitoring in West Oakland, California. Environmental Science & Technology, 53(13), 7564–7573.

    Article  CAS  Google Scholar 

  • Chemical Speciation Network (2020). https://www3.epa.gov/ttnamti1/speciepg.html. Accessed 1 Nov 2020.

  • Dauwe, T., Bervoets, L., Pinxten, R., Blust, R., & Eens, M. (2003). Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environmental Pollution, 124(3), 429–436.

    Article  CAS  Google Scholar 

  • DuBay, S. G., & Fuldner, C. C. (2017). Bird specimens track 135 years of atmospheric black carbon and environmental policy. Proceedings of the National Academy of Sciences, 114(43), 11321–11326.

    Article  CAS  Google Scholar 

  • Eulaers, I., Covaci, A., Herzke, D., Eens, M., Sonne, C., Moum, T., Schnug, L., Hanssen, S. A., Johnsen, T. V., Bustness, J. O., & Jaspers, V. L. B. (2011). A first evaluation of the usefulness of feathers of nestling predatory birds for non-destructive biomonitoring of persistent organic pollutants. Environment International, 37(3), 622–630.

    Article  CAS  Google Scholar 

  • Flinks, H., & Salewski, V. (2012). Quantifying the effect of feather abrasion on wing and tail lengths measurements. Journal of Ornithology, 153(4), 1053–1065.

    Article  Google Scholar 

  • Gasparini, J., Jacquin, L., Laroucau, K., Vorimore, F., Aubry, E., Castrec-Rouëlle, M., & Frantz, A. (2014). Relationships between metals exposure and epidemiological parameters of two pathogens in urban pigeons. Bulletin of Environmental Contamination and Toxicology, 92, 208–212.

    Article  CAS  Google Scholar 

  • Gillooly, S. E., Michanowicz, D. R., Jackson, M., Cambal, L. K., Shmool, J. L., Tunno, B. J., Tripathy, S., Bain, D. J., & Clougherty, J. E. (2019). Evaluating deciduous tree leaves as biomonitors for ambient particulate matter pollution in Pittsburgh, PA, USA. Environmental Monitoring and Assessment, 191(12), 711.

    Article  CAS  Google Scholar 

  • Griffith, K. T., Ponette-González, A. G., Curran, L. M., & Weathers, K. C. (2015). Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA. Environmental Monitoring and Assessment, 187(5), 270.

  • Howell, N. R., Lavers, J. L., Uematsu, S., Paterson, D., Howard, D. L., Spiers, K., Jonge, M. D., Hanley, T., Garrett, R., & Banati, R. B. (2017). The topobiology of chemical elements in seabird feathers. Scientific Reports, 7(1), 1–9.

    Article  Google Scholar 

  • Janssen, N.A.H., Gerlofs-Nijland, M.E., Lanki, T., Salonen, R.O., Cassee, F., Hoek, G., Fischer, P., Brunekreef, B., & Krzyzanowski, M. (2012). Health effects of black carbon. Report prepared by the Joint World Health Organization/Convention Task Force on Health Aspects of Air Pollution, WHO Regional Office for Europe, Copenhagen, Denmark.

  • Jaspers, V. L. B., Voorspoels, S., Covaci, A., Lepoint, G., & Eens, M. (2007). Evaluation of the usefulness of bird feathers as a non-destructive biomonitoring tool for organic pollutants: a comparative and meta-analytical approach. Environment International, 33(3), 328–337.

    Article  CAS  Google Scholar 

  • Jaspers, V. L. B., Covaci, A., Deleu, P., & Eens, M. (2009). Concentrations in bird feathers reflect regional contamination with organic pollutants. Science of the Total Environment, 407, 1447–1451.

    Article  CAS  Google Scholar 

  • Jaspers, V. L. B., Rodriguez, F. S., Boertmann, D., Sonne, C., Dietz, R., Rasmussen, L. M., Eens, M., & Covaci, A. (2011). Body feathers as a potential new biomonitoring tool in raptors: a study on organohalogenated contaminants in different feather types and preen oil of West Greenland white-tailed eagles (Haliaeetus albicilla). Environment International, 37, 1349–1356.

    Article  CAS  Google Scholar 

  • Jaspers, V. L. B., Covaci, A., Herzke, D., Eulaers, I., & Eens, M. (2019). Bird feathers as a biomonitor for environmental pollutants: Prospects and pitfalls. TrAC Trends in Analytical Chemistry, 118, 223–226.

    Article  CAS  Google Scholar 

  • Jia, S., Zhang, Q., Sarkar, S., Mao, J., Hang, J., Chen, W., Wang, X., Yuan, L., Yang, L., Ye, G., & Zhou, S. (2020). Size-segregated deposition of atmospheric elemental carbon (EC) in the human respiratory system: a case study of the Pearl River Delta, China. Science of the Total Environment, 708, 134932.

    Article  CAS  Google Scholar 

  • JMP. (n.d.) Version 14. SAS Institute Inc.: Cary, NC, 1989-2019.

  • Luce, B. W., Barrett, T. E., & Ponette-González, A. G. (2020). Student cyclists experience PM2.5 pollution hotspots around an urban university campus. The Geographical Bulletin, 61(2), 105–113.

    Google Scholar 

  • Martínez, A., Crespo, D., Fernández, J. Á., Aboal, J. R., & Carballeira, A. (2012). Selection of flight feathers from Buteo buteo and Accipiter gentilis for use in biomonitoring heavy metal contamination. Science of the Total Environment, 425, 254–261.

    Article  Google Scholar 

  • Maynard, L. D., & Ronconi, R. A. (2018). Foraging behaviour of Great Black-blacked Gulls Larus marinus near an urban centre in Atlantic Canada: evidence of individual specialization from GPS tracking. Marine Ornithology, 46, 27–32.

    Google Scholar 

  • Movalli, P., Bode, P., Dekker, R., Fornasari, L., van der Mije, S., & Yosef, R. (2017). Retrospective biomonitoring of mercury and other elements in museum feathers of common kestrel Falco tinnunculus using instrumental neutron activation analysis (INAA). Environmental Science and Pollution Research, 24(33), 25986–26005.

    Article  CAS  Google Scholar 

  • Muhammad, S., Wuyts, K., & Samson, R. (2019). Atmospheric net particle accumulation on 96 plant species with contrasting morphological and anatomical leaf characteristics in a common garden experiment. Atmospheric Environment, 202, 328–344.

    Article  CAS  Google Scholar 

  • NCTCOG. (2020). North Central Texas Council of Governments. Historical Traffic Counts. https://trafficcounts.nctcog.org/trafficcount/. Accessed 1 June 2020.

  • Peterson, S. H., Ackerman, J. T., Toney, M., & Herzog, M. P. (2019). Mercury concentrations vary within and among individual bird feathers: a critical evaluation and guidelines for feather use in mercury monitoring programs. Environmental Toxicology and Chemistry, 38(6), 1164–1187.

    Article  CAS  Google Scholar 

  • Pollack, L., Ondrasek, N. R., & Calisi, R. (2017). Urban health and ecology: the promise of an avian biomonitoring tool. Current Zoology, 63(2), 205–212.

    Article  Google Scholar 

  • Rasband, W. S., & Ferreira, T. (2011). ImageJ user guide. Bethesda: National Institutes of Health.

    Google Scholar 

  • Rindy, J. E., Ponette-González, A. G., Barrett, T. E., Sheesley, R. J., & Weathers, K. C. (2019). Urban trees are sinks for soot: elemental carbon accumulation by two widespread oak species. Environmental Science & Technology, 53(17), 10092–10101.

    Article  CAS  Google Scholar 

  • Rose, E., Haag-Wackernagel, D., & Nagel, P. (2006). Practical use of GPS-localization of feral pigeons Columba livia in the urban environment. Ibis, 148(2), 231–239.

    Article  Google Scholar 

  • Schulwitz, S. E., Chumchal, M. M., & Johnson, J. A. (2015). Mercury concentrations in birds from two atmospherically contaminated sites in North Texas, USA. Archives of Environmental Contamination and Toxicology, 69, 390–398.

    Article  CAS  Google Scholar 

  • Sun, J., Bossi, R., Bustnes, J. O., Helander, B., Boertmann, D., Dietz, R., Herzke, D., Jaspers, V. L. B., Labansen, A. L., Lepoint, G., Schulz, R., Sonne, C., Thorup, K., Tottrup, A. P., Zubrod, J. P., Eens, M., & Eulaers, I. (2019). White-tailed eagle (Haliaeetus albicilla) body feathers document spatiotemporal trends of perfluoroalkyl substances in the Northern Environment. Environmental Science & Technology, 53(21), 12744–12753.

    Article  CAS  Google Scholar 

  • Torres, A., Bond, T. C., Lehmann, C. M., Subramanian, R., & Hadley, O. L. (2014). Measuring organic carbon and black carbon in rainwater: evaluation of methods. Aerosol Science and Technology, 48(3), 239–250.

    Article  CAS  Google Scholar 

  • Wolterbeek, B. (2002). Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environmental Pollution, 120(1), 11–21.

    Article  CAS  Google Scholar 

  • Zhu, Y., Hinds, W. C., Kim, S., Shen, S., & Sioutas, C. (2002). Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmospheric Environment, 36(27), 4323–4335.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Pitre family for collecting moulted feathers used in this study. We are also grateful to David Hoeinghaus for generously providing laboratory resources needed to conduct this research, and to Brian Wheeler and the grounds staff at the University of North Texas for campus support. We are indebted to three anonymous reviewers for providing excellent feedback on our manuscript.

Funding

This work was supported by the National Science Foundation (CAREER #1552410 to AGPG), the University of North Texas Office of the Provost, Honors College, College of Visual Arts and Design, College of Liberal Arts and Social Sciences, the Department of Geography and the Environment, and the Department of Studio Art. Sponsors played no role in the collection, analysis and interpretation of data, in the writing of the report, or in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

Pitre: Conceptualization, methodology, formal analysis, investigation, writing (original draft). Ponette-González: Conceptualization, methodology, resources, writing (original draft), visualization, supervision, project administration, funding acquisition. Doherty: Writing (review and editing), visualization, supervision, funding acquisition. Lee: Methodology, writing (review and editing), visualization. Rindy: Methodology, formal analysis, writing (review and editing). Fry: Methodology, writing (review and editing), supervision, funding acquisition. Johnson: Conceptualization, methodology, writing (review and editing), supervision.

Corresponding author

Correspondence to Alexandra G. Ponette-González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitre, C., Ponette-González, A.G., Rindy, J.E. et al. Bird feathers are potential biomonitors for airborne elemental carbon. Environ Monit Assess 193, 35 (2021). https://doi.org/10.1007/s10661-020-08804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08804-2

Keywords

Navigation