Skip to main content

Advertisement

Log in

Choosing an appropriate water quality model—a review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water quality models are quite complex to use even for scientists, requiring knowledge in different areas such as biology, chemistry, physics, and engineering. Hence, the use of these models by a non-specialist is quite complicated, demanding considerable time and research, particularly to choose which model is the most appropriate for a given situation. In this study, a comparative guide is suggested, which can help users select the appropriate water quality model for certain systems and variables. Five models were considered as follows: AQUATOX, CE-QUAL-W2, Spatially Referenced Regression Model on Watershed Attributes (SPARROW), Soil and Water Assessment Tool (SWAT), and Water Quality Analysis Simulation Program 7 (WASP7), which have been widely used during the last 5 years. All of these selected models are free and easily available. It was verified that each model has its particularities and applications; however, the AQUATOX model has several advantages compared with the other models analyzed. In addition, to illustrate the availability of the proposed comparative guide, a case study was carried out to demonstrating the selection process of the selected models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a
Fig. 4b

Similar content being viewed by others

References

  • Ahmad, N., Hafiz, M., Sinclair, A., Jamieson, R., Madani, A., Hebb, D., ... , Yiridoe, E. K. (2011) Modeling sediment and nitrogen export from a rural watershed in Eastern Canada using the soil and water assessment tool. Journal of Environmental Quality, 40(4), 1182-1194. DOI: https://doi.org/10.2134/jeq2010.0530

  • Akkoyunlu, A., & Karaaslan, Y. (2015). Assessment of improvement scenario for water quality in Mogan Lake by using the AQUATOX Model. Environmental Science and Pollution Research, 22(18), 14349–14357. https://doi.org/10.1007/s11356-015-5027-0.

    Article  CAS  Google Scholar 

  • Ambrose, B., Wool, T. A., & Martin, J. L. (2001). The water quality analysis simulation program, WASP6, User Manual. US EPA: Athens.

    Google Scholar 

  • ANA, Agência Nacional de Águas. (2020). Redes de Monitoramento - Portal da Qualidade das Águas. Available in: http://www3.ana.gov.br.

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34(1), 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.

    Article  CAS  Google Scholar 

  • Arnold, J. G. , Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E.B, Neitsch, S.L. (2012) Soil and water assessment tool theoretical documentation version 2012. In: Grassland, Soil and Water Research Laboratory - Agricultural Research Service. Blackland Research Center - Texas Agricultural Experiment Station.

  • Chen, H., Luo, Y., Potter, C., Moran, P. J., Grieneisen, M. L., & Zhang, M. (2017). Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT. Water Research, 121, 374–385. https://doi.org/10.1016/j.watres.2017.05.032.

    Article  CAS  Google Scholar 

  • Chinyama, A., Ochieng, G. M., Nhapi, I., & Otieno, F. A. O. (2014). A simple framework for selection of water quality models. Reviews in Environmental Science and Bio/Technology, 13(1), 109–119. https://doi.org/10.1007/s11157-013-9321-3.

    Article  Google Scholar 

  • Cho, K. H., Pachepsky, Y. A., Kim, M., Pyo, J., Park, M. H., Kim, Y. M., Kim, J. W., & Kim, J. H. (2016). Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT. Journal of Hydrology, 535, 377–385. https://doi.org/10.1016/j.jhydrol.2016.01.084.

    Article  Google Scholar 

  • Cole, T. M., & Wells, S. A. (2017). CE-QUAL-W2: a two-dimensional, laterally averaged, hydro-dynamic and water quality model, version 4.1. Portland: Department of Civil and Environmental Engineer-ing, Portland State University.

    Google Scholar 

  • Costa C. M. D. S. B., da Silva Marques L., Almeida A.K., Leite IR, de Almeida IK (2019). Applicability of water quality models around the world—a review. Environmental Science and Pollution Research, 1-22. DOI: https://doi.org/10.1007/s11356-019-06637-2

  • Cox, B. A. (2003). A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Science of the Total Environment, 314, 335–377. https://doi.org/10.1016/S0048-9697(03)00063-9.

    Article  CAS  Google Scholar 

  • FEMA/MT - Fundação Estadual do Meio Ambiente de Mato Grosso (2002). Projeto de Recuperação e Conservação da Bacia do Rio Cuiabá FEMA/EMPAER: Subprojeto: monitoramento da qualidade da água do Rio Cuiabá com ênfase na bacia do Rio Jangada. 2nd version. Cuiabá: FEMA.

  • García, A. M., Alexander, R. B., Arnold, J. G., Norfleet, L., White, M. J., Robertson, D. M., & Schwarz, G. (2016). Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin. Environmental Science & Technology, 50(13), 6991–7000. https://doi.org/10.1021/acs.est.5b03543.

    Article  CAS  Google Scholar 

  • Golmohammadi, G., Rudra, R., Dickinson, T., Goel, P., & Veliz, M. (2017). Predicting the temporal variation of flow contributing areas using SWAT. Journal of Hydrology, 547, 375–386. https://doi.org/10.1016/j.jhydrol.2017.02.008.

    Article  Google Scholar 

  • Grechi, L., Franco, A., Palmeri, L., Pivato, A., & Barausse, A. (2016). An ecosystem model of the lower Po river for use in ecological risk assessment of xenobiotics. Ecological Modelling, 332, 42–58. https://doi.org/10.1016/j.ecolmodel.2016.03.008.

    Article  CAS  Google Scholar 

  • Hosseini, N., Johnston, J., & Lindenschmidt, K. E. (2017a). Impacts of climate change on the water quality of a regulated prairie river. Water, 9(3), 199. https://doi.org/10.3390/w9030199.

    Article  CAS  Google Scholar 

  • Hosseini, N., Chun, K. P., Wheater, H., & Lindenschmidt, K. E. (2017b). Parameter sensitivity of a surface water quality model of the lower South Saskatchewan River—comparison between ice-on and ice-off periods. Environmental Modeling & Assessment, 22(4), 291–307. https://doi.org/10.1007/s10666-016-9541-3.

    Article  Google Scholar 

  • Jackson-Blake, L. A., Sample, J. E., Wade, A. J., Helliwell, R. C., & Skeffington, R. A. (2017). Are our dynamic water quality models too complex? A comparison of a new parsimonious phosphorus model, S imply P, and INCA-P. Water Resources Research, 53(7), 5382–5399. https://doi.org/10.1002/2016WR020132.

    Article  CAS  Google Scholar 

  • Jeznach, L. C., Jones, C., Matthews, T., Tobiason, J. E., & Ahlfeld, D. P. (2016). A framework for modeling contaminant impacts on reservoir water quality. Journal of Hydrology, 537, 322–333. https://doi.org/10.1016/j.jhydrol.2016.03.041.

    Article  CAS  Google Scholar 

  • Kannel, P. R., & Gan, T. Y. (2013). Application of WASP for modelling and management of naphthenic acids along Athabasca River, Alberta, Canada. Water, Air, & Soil Pollution, 224(11), 1764. https://doi.org/10.1007/s11270-013-1764-1.

    Article  CAS  Google Scholar 

  • Kannel, P. R., Kanel, S. R., Lee, S., Lee, Y. S., & Gan, T. Y. (2011). A review of public domain water quality models for simulating dissolved oxygen in rivers and streams. Environmental Modeling & Assessment, 16(2), 183–204. https://doi.org/10.1007/s10666-010-9235-1.

    Article  Google Scholar 

  • Masoumi, F., Afshar, A., & Palatkaleh, S. T. (2016). Selective withdrawal optimization in river–reservoir systems; trade-offs between maximum allowable receiving waste load and water quality criteria enhancement. Environmental monitoring and assessment, 188(7), 390. https://doi.org/10.1007/s10661-016-5386-0.

    Article  CAS  Google Scholar 

  • Mateus, M., Vieira, R. D. S., Almeida, C., Silva, M., & Reis, F. (2018). ScoRE—a simple approach to select a water quality model. Water, 10(12), 1811. https://doi.org/10.3390/w10121811.

    Article  Google Scholar 

  • Miller, M. P., Buto, S. G., Susong, D. D., & Rumsey, C. A. (2016). The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin. Water Resources Research, 52(5), 3547–3562. https://doi.org/10.1002/2015WR017963.

    Article  Google Scholar 

  • Park, R. A., & Clough, J. S. (2014). Aquatox (Release 3.1 plus), Modelagem do Destino Ambiental e Efeitos Ecológicos em Ecossistemas Aquáticos, Volume 2: Documentação Técnica. Washington, DC: Agência de Proteção Ambiental dos EUA (USEPA) 354. EPA-820-R-14-007. April, 2014.

    Google Scholar 

  • Puri, D., Borel, K., Vance, C., & Karthikeyan, R. (2017). Optimization of a water quality monitoring network using a spatially referenced water quality model and a genetic algorithm. Water, 9(9), 704. https://doi.org/10.3390/w9090704.

    Article  Google Scholar 

  • Qi, J., Li, S., Li, Q., Xing, Z., Bourque, C. P. A., & Meng, F. R. (2016). A new soil-temperature module for SWAT application in regions with seasonal snow cover. Journal of Hydrology, 538, 863–877. https://doi.org/10.1016/j.jhydrol.2016.05.003.

    Article  Google Scholar 

  • Sadeghian, A., Chapra, S. C., Hudson, J., Wheater, H., & Lindenschmidt, K. E. (2018). Improving in-lake water quality modeling using variable chlorophyll a/algal biomass ratios. Environmental Modelling & Software, 101, 73–85. https://doi.org/10.1016/j.envsoft.2017.12.009.

    Article  Google Scholar 

  • Saleh, D., & Domagalski, J. (2015). SPARROW modeling of nitrogen sources and transport in rivers and streams of California and adjacent states, US. JAWRA Journal of the American Water Resources Association, 51(6), 1487–1507. https://doi.org/10.1111/1752-1688.12325.

    Article  CAS  Google Scholar 

  • Scholz-Starke, B., Ottermanns, R., Rings, U., Floehr, T., Hollert, H., Hou, J., ..., Wei, H. (2013) An integrated approach to model the biomagnification of organic pollutants in aquatic food webs of the Yangtze Three Gorges Reservoir ecosystem using adapted pollution scenarios. Environmental Science and Pollution Research, 20(10), 7009-7026. DOI: https://doi.org/10.1007/s11356-013-1504-5

  • Schwarz, G. E., Hoos, A. B., Alexander, R. B., & Smith, R. A. (2006). The SPARROW surface water-quality model: theory, application and user documentation. US Geological Survey Techniques and Methods Report, Book, 6(10), 248.

    Google Scholar 

  • Shabani, A., Zhang, X., & Ell, M. (2017). Modeling water quantity and sulfate concentrations in the Devils Lake Watershed using coupled SWAT and CE-QUAL-W2. JAWRA Journal of the American Water Resources Association, 53(4), 748–760. https://doi.org/10.1111/1752-1688.12535.

    Article  Google Scholar 

  • Sharma, D., & Kansal, A. (2013). Assessment of river quality models: a review. Rev. Environ. Sci. Bio/Technol, 12(3), 285–311. https://doi.org/10.1007/s11157-012-9285-8.

    Article  Google Scholar 

  • Slaughter, A. R., Hughes, D. A., Retief, D. C. H., & Mantel, S. K. (2017). A management-oriented water quality model for data scarce catchments. Environmental Modelling & Software, 97, 93–111. https://doi.org/10.1016/j.envsoft.2017.07.015.

    Article  Google Scholar 

  • Vigiak, O., Malagó, A., Bouraoui, F., Vanmaercke, M., Obreja, F., Poesen, J., Habersack, H., Fehér, J., & Grošelj, S. (2017). Modelling sediment fluxes in the Danube River Basin with SWAT. Science of the Total Environment, 599, 992–1012. https://doi.org/10.1016/j.scitotenv.2017.04.236.

    Article  CAS  Google Scholar 

  • Xu, F., Dong, G., Wang, Q., Liu, L., Yu, W., Men, C., & Liu, R. (2016). Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model. Journal of Hydrology, 540, 355–367. https://doi.org/10.1016/j.jhydrol.2016.06.019.

    Article  CAS  Google Scholar 

  • Xue, C. H., Yin, H. L., & Xie, M. (2015). Development of integrated catchment and water quality model for urban rivers. Journal of Hydrodynamics, 27(4), 593–603. https://doi.org/10.1016/S1001-6058(15)60521-2.

    Article  Google Scholar 

  • Yang, Q., & Zhang, X. (2016). Improving SWAT for simulating water and carbon fluxes of forest ecosystems. Science of the Total Environment, 569, 1478–1488. https://doi.org/10.1016/j.scitotenv.2016.06.238.

    Article  CAS  Google Scholar 

  • Yazdi, J., & Moridi, A. (2017). Interactive reservoir-watershed modeling framework for integrated water quality management. Water Resources Management, 31(7), 2105–2125. https://doi.org/10.1007/s11269-017-1627-4.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES, to the Programa de Apoio à Pós-graduação—PROAP and to the Federal University of Mato Grosso do Sul—UFMS for their support in the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Kaufmann de Almeida.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, C.M.d.B., Leite, I.R., Almeida, A.K. et al. Choosing an appropriate water quality model—a review. Environ Monit Assess 193, 38 (2021). https://doi.org/10.1007/s10661-020-08786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08786-1

Keywords

Navigation