Skip to main content
Log in

SChoA: a newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The Chimp optimization algorithm (ChoA) inspired by the individual intelligence and sexual motivation of chimps in their group hunting, which is separate from the another social predators. Generally, it is developed for trapping in local optima on the complex functions and alleviate the slow convergence speed. This algorithm has been widely applied to find the best optima solutions of complex global optimization tasks due to its simplicity and inexpensive computational overhead. Nevertheless, premature convergence is easily trapped in the local optimum solution during search process and is ineffective in balancing exploitation and exploration. In this paper, we have developed a modified novel nature inspired optimizer algorithm based on the sine–cosine functions; it is called as sine–cosine chimp optimization algorithm (SChoA). During this research, the sine–cosine functions have been applied to update the equations of chimps during the search process for reducing the several drawbacks of the ChoA algorithm such as slow convergence rate, locating local minima rather than global minima, and low balance amid exploitation and exploration. Experimental solutions based on 23-standard benchmark and 06 engineering functions such as welded beam, tension/compression spring, pressure vessel, multiple disk clutch brake, planetary gear train and digital filters design, etc. demonstrate the robustness, effectiveness, efficiency, and convergence speed of the proposed algorithm in comparison with others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dhiman G, Garg M (2020) MOSSE: a novel hybrid multi-objective meta-heuristic algorithm for engineering design problems. Soft Comput:1–20

  2. Dhiman G (2019) Multi-objective metaheuristic approaches for data clustering in engineering application(s), Ph.D. thesis

  3. Dhiman G, Kaur A (2019) HKN-RVEA: a novel many-objective evolutionary algorithm for car side impact bar crashworthiness problem. Int J Vehicle Design 80(2–4):257–284

    Article  Google Scholar 

  4. Dhiman G, Singh KK, Slowik A, Chang V, Yildiz AR, Kaur A, Garg M (2020) Emosoa: a new evolutionary multi-objective seagull optimization algorithm for global optimization. Int J Mach Learn Cybern:1–26

  5. Dhiman G, Oliva D, Kaur A, Singh KK, Vimal S, Sharma A, Cengiz K (2020) Bepo: A novel binary emperor penguin optimizer for automatic feature selection. Knowl Based Syst:106560

  6. Dhiman G, Singh KK, Soni M, Nagar A, Dehghani M, Slowik A, Kaur A, Sharma A, Houssein EH, Cengiz K (2020) MOSOA: a new multi-objective seagull optimization algorithm. Expert Syst Appl:114150

  7. Kaur H, Rai A, Bhatia SS, Dhiman G (2020) MOEPO: a novel multi-objective emperor penguin optimizer for global optimization: Special application in ranking of cloud service providers. Eng Appl Artif Intell 96:104008

    Article  Google Scholar 

  8. Dhiman G, Kaur A (2019) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148–174

    Article  Google Scholar 

  9. Kaur S, Awasthi LK, Sangal A, Dhiman G (2020) Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541

    Article  Google Scholar 

  10. Dehghani M, Montazeri Z, Malik OP, Dhiman G, Kumar V (2019) Bosa: binary orientation search algorithm. Int J Innov Technol Explor Eng 9:5306–10

    Article  Google Scholar 

  11. Dhiman G (2019) ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng Comput:1–31

  12. Dhiman G (2020) MOSHEPO: a hybrid multi-objective approach to solve economic load dispatch and micro grid problems. Appl Intell 50(1):119–137

    Article  Google Scholar 

  13. Dhiman G, Kumar V (2018a) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl Based Syst 159:20–50

    Article  Google Scholar 

  14. Dhiman G, Kumar V (2018) Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl Based Syst 150:175–197

    Article  Google Scholar 

  15. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl Based Syst 165:169–196

    Article  Google Scholar 

  16. Dhiman G, Kumar V (2019) KNRVEA: a hybrid evolutionary algorithm based on knee points and reference vector adaptation strategies for many-objective optimization. Appl Intell 49(7):2434–2460

    Article  Google Scholar 

  17. Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manag 120(4):423–443

    Article  Google Scholar 

  18. BoussaïD I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  19. Parejo JA, Ruiz-Cortés A, Lozano S, Fernandez P (2012) Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput 16(3):527–561

    Article  Google Scholar 

  20. Zakeri E, Moezi SA, Bazargan-Lari Y, Zare A (2017) Multi-tracker optimization algorithm: a general algorithm for solving engineering optimization problems. Iran J Sci Technol Trans Mech Eng 41(4):315–341

    Article  Google Scholar 

  21. Xue B, Zhang M, Browne WN, Yao X (2016) A survey on evolutionary computation approaches to feature selection. IEEE Trans Evol Comput 20(4):606–626

    Article  Google Scholar 

  22. Bozorg-Haddad O (2018) Advanced optimization by nature-inspired algorithms. Springer, New Yotk

    Book  Google Scholar 

  23. Fister I, Strnad D, Yang X-S (2015) Adaptation and hybridization in nature-inspired algorithms. In: Adaptation and hybridization in computational intelligence. Springer, pp 3–50

  24. Zeng S, Dai J, Yi Z, He W (2018) A modified sine-cosine algorithm based on neighborhood search and greedy levy mutation. In: Computational intelligence and neuroscience. Hindawi, pp 1–20

  25. Ibrahim RA, Ewees AA, Oliva D, Elaziz MA, Lu S (2018) Improved salp Swarm algorithm based on particle swarm optimization for feature selection. J Ambient Intell Human Comput:1–15

  26. San-José-Revuelta LM, Arribas JI (2018) A new approach for the design of digital frequency selective FIR filters using an FPA-based algorithm. Expert Syst Appl 106:92–106

    Article  Google Scholar 

  27. Ibrahim A, Ahmed A, Hussein S, Hassanien AE (2018) Fish image segmentation using salp swarm algorithm. International Conference on advanced machine learning technologies and applications. Springer, New York, pp 42–51

    Google Scholar 

  28. Saha SK, Ghoshal SP, Kar R, Mandal D (2013) Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Trans 52(6):781–794

    Article  Google Scholar 

  29. Liu X, Xu H, Application on target localization based on salp swarm algorithm. In: 37th Chinese Control Conference (CCC). IEEE, pp 4542–4545 (2018)

  30. Aggarwal A, Rawat TK, Upadhyay DK (2016) Design of optimal digital fir filters using evolutionary and swarm optimization techniques. AEU-International J Electron Commun 70(4):373–385

    Article  Google Scholar 

  31. Yagain D, Vijayakrishna A (2015) A novel framework for retiming using evolutionary computation for high level synthesis of digital filters. Swarm Evol Comput 20:37–47

    Article  Google Scholar 

  32. Bairathi D, Gopalani D (2019) Salp swarm algorithm (SSA) for training feed-forward neural networks. Soft computing for problem solving. Springer, New York, pp 521–534

    Chapter  Google Scholar 

  33. Sahu P, Prusty R, Sahoo B (2020) Modified sine cosine algorithm-based fuzzy-aided pid controller for automatic generation control of multiarea power systems. Methodologies and application. Springer, New York, pp 12919–12936

    Google Scholar 

  34. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: A novel physics-based algorithm. Future Gener Comput Syst 101:646–667

    Article  Google Scholar 

  35. Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, New York

    Book  MATH  Google Scholar 

  36. Bonabeau E, Dorigo M, Marco DRDF, Théraulaz G et al (1999) Swarm intelligence: from natural to artificial systems, no 1. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  37. Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol. 4, pp 1942–1948 (Citeseer)

  38. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Soft 114:163–191

    Article  Google Scholar 

  39. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems. Elsevier, Amsterdam, pp 120–133

    Google Scholar 

  40. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: Algorithm and applications. Future Gener Comput Syst 97:849–872

    Article  Google Scholar 

  41. Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48(10):3462–3481

    Article  Google Scholar 

  42. Rizk-Allah RM, Hassanien AE, Elhoseny M, Gunasekaran M (2018) A new binary salp swarm algorithm: development and application for optimization tasks. Neural Comput Appl:1–23

  43. Ab Wahab MN, Nefti-Meziani S, Atyabi A (2015) A comprehensive review of swarm optimization algorithms. PLoS One 10(5):e0122827

    Article  Google Scholar 

  44. Alresheedi SS, Lu S, Elaziz MA, Ewees AA (2019) Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing. Human Centric Comput Inf Sci 9(1):15

    Article  Google Scholar 

  45. Zhao H, Huang G, Yan N (2018) Forecasting energy-related CO2 emissions employing a novel ssa-lssvm model: considering structural factors in china. Energies 11(4):781

    Article  Google Scholar 

  46. dos Santos Coelho L, Mariani VC (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34(3):1905–1913

    Article  Google Scholar 

  47. Faris H, Mafarja MM, Heidari AA, Aljarah I, Ala’M A-Z, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl Based Syst 154:43–67

    Article  Google Scholar 

  48. Qu C, Zeng Z, Dai J, Yi Z, He W (2018) A modified sine-cosine algorithm based on neighborhood search and Greedy Levy mutation

  49. Esmaeili M, Zahiri S, Razavi S (2020) A novel method for high-level synthesis of datapaths in digital flters using a moth-fame optimization algorithm. Evolutionary intelligence, no 13. Springer, New York, pp 399–414

    Google Scholar 

  50. Gholizadeh S, Sojoudizadeh R (2019) Modified sine–cosine algorithm for sizing optimization of Truss structures with discrete design variables

  51. Khishe M, Mosavi MR (2020) Chimp optimization algorithm. In: Expert systems with applications, vol 149. Elsevier, Amsterdam

  52. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  53. Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  54. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734

    Article  Google Scholar 

  55. Van Den Berg R, Pogromsky AY, Leonov G, Rooda J (2006) Design of convergent switched systems. Group coordination and cooperative control. Springer, New York, pp 291–311

    Chapter  Google Scholar 

  56. Krohling RA, dos Santos Coelho L (2006) Coevolutionary particle swarm optimization using gaussian distribution for solving constrained optimization problems. IEEE Trans Syst Man Cybern Part B (Cybern) 36(6):1407–1416

    Article  Google Scholar 

  57. Ragsdell K, Phillips D (1976) Optimal design of a class of welded structures using geometric programming. J Eng Ind 98:1021–1025

    Article  Google Scholar 

  58. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Article  Google Scholar 

  59. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Article  Google Scholar 

  60. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  61. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  62. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  63. Singh N, Houssein EH, Singh SB (2020) An efficient hybrid salp swarm harris hawks optimization for optimization problems. Communicated in engineering applications of artificial intelligence. Elsevier, Amsterdam, pp 1–50

    Google Scholar 

  64. Digehsara PA, Chegini SN, Bagheri A, Roknsaraei MP (2020) An improved particle swarm optimization based on the reinforcement of the population initialization phase by scrambled halton sequence. Cogent Eng 7(1):1737383

    Article  Google Scholar 

  65. Alsa’deh A, Rafiee H, Meinel C (2012) Ipv6 stateless address autoconfiguration: balancing between security, privacy and usability. In: 5th International Symposium on Foundations & Practice of Security (FPS), pp 1–14

  66. Woodbridge J, Anderson H, Ahuja A, Grant D (2016) Predicting domain generation algorithms with long short-term memory networks, pp 433–448. arXiv:1611.00791

  67. Liu F, Jia Y, Ren L (2013) Anti-synchronizing different chaotic systems using active disturbance rejection controller based on the chaos particle swarm optimization algorithm. Acta Phys Sin 62(12):1–8

    Google Scholar 

  68. Yang J, Jin Y (2011) Chaotic based differential evolution algorithm for optimization of baker’s yeast drying process. In: 2011 3rd International workshop on intelligent systems and applications (12062007), pp 1–8

  69. Yuzgec U, Eser M (2018) Hierarchy particle swarm optimization algorithm (hpso) and its application in multi-objective operation of hydropower stations. Egypt Inf J 19(3):151–163

    Google Scholar 

  70. Weinmann R, Wirt K (2004) Analysis of the dvb common scrambling algorithm. In: Proceeding of Conference on Communications and Multimedia. Security, pp 1–8

  71. Xiong G, Zhang J, Yuan X, Shi D, He Y, Yao G Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Solar Energy 176

  72. Tong W (2020) A hybrid algorithm framework with learning and complementary fusion features for whale optimization algorithm. Scientific Programming (ID 5684939), pp 1–25

  73. Azizyan G, Miarnaeimi F, Rashki M, Shabakhty N (2019) Flying squirrel optimizer (fso): A novel si-based optimization algorithm for engineering problems. Iran J Optim 11(2):177–205

    Google Scholar 

  74. Joshi H, Arora (2017) S Enhanced grey wolf optimisation algorithm for constrained optimisation problems. In: International journal of swarm intelligence, vol. 3. Taylor & Francis, pp 126–151

  75. Bao G, Mao K (2009) Particle swarm optimization algorithm with asymmetric time varying acceleration coefficients. In: Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 2134–2139

  76. Geetha T, Sathya M (2012) Modified particle swarm optimization (mpso) algorithm for web service selection (wss) problem. In: 2012 International Conference on Data Science & Engineering (ICDSE) (12964092), pp 1–8

  77. Kim N, Xiong J, Hwu W (2017) heterogeneous computing meets near-memory acceleration and high-level synthesis in the post-moore era, in: IEEE Micro, vol. 37. IEEE, pp 10–18

  78. Pilato C, Garg S, Wu K, Karri R, Regazzoni F (2018) Securing hardware accelerators: a new challenge for high-level synthesis. In: IEEE Embed Syst Lett, vol. 10. IEEE, pp 77–80

  79. Sengupta BS A, Mohanty S (2017) Tl-hls: methodology for low cost hardware trojan security aware scheduling with optimal loop unrolling factor during high level synthesis. In: IEEE Trans Comput Aided Des Integr Circuits Syst, vol 36. IEEE, pp 655–668

  80. Mohanty S, Ranganathan N, Kougianos E, Patra P (2008) Low-power high-level synthesis for nanoscale cmos circuits. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narinder Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 15.

1.1 Welded beam design problem

$$\begin{aligned}&\text {Consider }\mathbf {x}=\left[ {{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}} \right] =\left[ h\,l\,t\,b \right] \\&\text {Minimize } f\left( {\mathbf {x}} \right) =1.10471x_{1}^{2}{{x}_{2}}+0.04811{{x}_{3}}{{x}_{4}}\left( 14.0+{{x}_{2}} \right) \\&\text {Subject to: } \\&{{g}_{1}}\left( {\mathbf {x}} \right) =\tau \left( {\mathbf {x}} \right) -13600\le 0 \\&{{g}_{2}}\left( {\mathbf {x}} \right) =\sigma \left( {\mathbf {x}} \right) -30000\le 0 \\&{{g}_{3}}\left( {\mathbf {x}} \right) ={{x}_{1}}-{{x}_{4}}\le 0 \\&{{g}_{4}}\left( {\mathbf {x}} \right) =0.10471\left( x_{1}^{2} \right) +0.04811{{x}_{3}}{{x}_{4}}\left( 14+{{x}_{2}} \right) -5.0\le 0 \\&{{g}_{6}}\left( {\mathbf {x}} \right) =\delta \left( {\mathbf {x}} \right) -0.25\le 0 \\&{{g}_{7}}\left( {\mathbf {x}} \right) =6000-{{p}_{c}}\left( {\mathbf {x}} \right) \le 0 \\&\text {where} \\&\tau \left( {\mathbf {x}} \right) =\sqrt{\left( {{\tau }'} \right) +\left( 2{\tau }'{\tau }'' \right) \frac{{{x}_{2}}}{2R}+{{\left( {{\tau }''} \right) }^{2}}} \\&{\tau }'=\frac{6000}{\sqrt{2}{{x}_{1}}{{x}_{2}}} \\&{\tau }''=\frac{MR}{J} \\&M=6000\left( 14+\frac{{{x}_{2}}}{2} \right) \\&R=\sqrt{\frac{x_{2}^{2}}{4}+{{\left( \frac{{{x}_{1}}+{{x}_{3}}}{2} \right) }^{2}}} \\&j=2\left\{ {{x}_{1}}{{x}_{2}}\sqrt{2}\left[ \frac{x_{2}^{2}}{12}+{{\left( \frac{{{x}_{1}}+{{x}_{3}}}{2} \right) }^{2}} \right] \right\} \\&\sigma \left( {\mathbf {x}} \right) =\frac{504000}{{{x}_{4}}x_{3}^{2}} \\&\delta \left( {\mathbf {x}} \right) =\frac{65856000}{\left( 30\times {{10}^{6}} \right) {{x}_{4}}x_{3}^{3}} \\&{{p}_{c}}\left( {\mathbf {x}} \right) =\frac{4.013\left( 30\times {{10}^{6}} \right) \sqrt{\frac{x_{3}^{2}x_{4}^{6}}{36}}}{196}\left( 1-\frac{{{x}_{3}}\sqrt{\frac{30\times {{10}^{6}}}{4\left( 12\times {{10}^{6}} \right) }}}{28} \right) \\&\text {with } 0.1\le {{x}_{1}},{{x}_{4}}\le 2.0\,and\,0.1\le {{x}_{2}},{{x}_{3}}\le 10.0. \end{aligned}$$

1.2 Tension/compression spring design problem

Consider:

$$\begin{aligned}&\mathbf {x}=\left[ {{x}_{1}}{{x}_{2}}{{x}_{3}} \right] =\left[ d\,D\,N \right] \\&\text {Minimize } f\left( {\mathbf {x}} \right) =\left( {{x}_{3}}+2 \right) {{x}_{2}}x_{1}^{2} \\&\text {subject to: } \\&{{g}_{1}}\left( {\mathbf {x}} \right) =1-\frac{x_{2}^{3}{{x}_{3}}}{71785x_{1}^{4}}\le 0 \\&{{g}_{2}}\left( {\mathbf {x}} \right) =\frac{4x_{2}^{2}-{{x}_{1}}{{x}_{2}}}{12566\left( {{x}_{2}}x_{1}^{3}-x_{1}^{4} \right) }+\frac{1}{5108x_{1}^{2}}-1\le 0 \\&{{g}_{3}}\left( {\mathbf {x}} \right) =1-\frac{140.45{{x}_{1}}}{x_{2}^{2}{{x}_{3}}}\le 0 \\&{{g}_{4}}\left( {\mathbf {x}} \right) =\frac{{{x}_{1}}+{{x}_{2}}}{1.5}-1\le 0 \\&\text {with } 0.05\le {{x}_{1}}\le 2.0,0.25\le {{x}_{2}}\le 1.3,and\,2.0\le {{x}_{3}}\le 15.0. \end{aligned}$$

1.3 Pressure vessel design problem

$$\begin{aligned}&\text {Minimize }f(x)=0.6224{{x}_{1}}{{x}_{3}}{{x}_{4}}+1.7781{{x}_{2}}x_{3}^{2}+3.1661x_{1}^{2}{{x}_{4}}+19.84x_{1}^{2}{{x}_{3}} \\&\text {Subject to: }\\&{{g}_{1}}(x)=-{{x}_{1}}+0.0193x \\&{{g}_{2}}(x)=-{{x}_{2}}+0.00954{{x}_{3}}\,\le 0 \\&{{g}_{3}}(x)=-\pi x_{3}^{2}{{x}_{4}}-(4/3)\pi x_{3}^{3}+1,296,000\le 0 \\&{{g}_{4}}(x)={{x}_{4}}-240\le 0 \\&0\le {{x}_{i}}\le 100,\,\,i=1,2 \\&10\le {{x}_{i}}\le 200,\,\,i=3,4. \end{aligned}$$

1.4 Multiple disk clutch brake design problem

$$\begin{aligned}&\quad \text {Minimize}f(x)=\pi (x_{2}^{2}-x_{1}^{2})x_3(x_5+1)\rho \\&\text {Variable range} \\&x_1 \varepsilon \left\{ 60,61,...,79,80 \right\} \\&x_2 \varepsilon \left\{ 90,91,...,109,110 \right\} \\&x_3 \varepsilon \left\{ 1,1.5,...,3 \right\} \\&x_4 \varepsilon \left\{ 600,610,...,990,1000 \right\} \\&x_5 \varepsilon \left\{ 2,3,...,8,9 \right\} \\&\text {Subject to;} g_1(x)=x_2-x_1-\Delta r \le 0 \\&g_2(x)=L_{\max }-(x_5+1)(x_3+\delta ) \le 0 \\&g_3(x)=p_{\max }-p_{rz}\le 0 \\&g_4(x)=p_{\max }v_{\mathrm{sr},\, \max }-p_{rz}v_{sr}\le 0 \\&g_5(x)=v_{\mathrm{sr}, \max }-v_{sr}\le 0 \\&g_6(x)=M_h-sM_s \le 0 \\&g_7(x)=T \le 0 \\&g_8(x)=T_{\max }-T \le 0 \\&\Delta r =20\,(\mathrm{mm}), I_z = 55\,(\mathrm{kg},\,\mathrm{mm}^2), p_{\max }=1\,(\mathrm{MPa}), T_{max}=15 (\mathrm{s}), \mu =0.50 \\&s=1.50. M_s=40\,(\mathrm{Nm}), M_f=3\,(\mathrm{Nm}), n=250\,(\mathrm{rpm}),v_{\mathrm{sr},\, \mathrm{max}}=10(\frac{m}{s}), L_{\max }=30(mm). \end{aligned}$$

1.5 Planetary gear train design problem

$$\begin{aligned}&\quad \text {Maximize }f(x)=\max \left| i_k-i_{ok} \right| ; k=\left\{ 1,2,R \right\} \\&\mathrm{where} \\&i_1=N_6/N_4 \\&i_{01}=3.11 \\&i_2=\frac{N_6(N_1N_3+N_2N_4)}{N_1N_3(N_6-N_4)} \\&i_{02}=1.84 \\&i_R=-\frac{N_2N_6}{N_1N3} \\&i_{0R}=-3.11 \\&X= \left\{ N_1,N_2,N_3,N_4,N_5,p,m_1,m_2 \right\} , \\&\text {Subject to: }\\&g_1(X)=m_3(N_6+2.5)\le D_{\max } \\&g_2(X)=m_1(N_1+N_2)+m_1(N_2+2) \le D_{\max } \\&g_3(X)=m_3(N_4+N_5)+m_3(N_5+2) \le D_{\max } \\&g_4(X)=\left| m_1(N_1+N_2)-m_3(N_6-N_3) \right| \le m_1+m_3 \\&g_5(X)=(N_1+N_2)\sin \left( \frac{\pi }{p}\right) -N_2-2-\delta _{22} \ge 0 \\&g_6(X)=(N_6-N_3)\sin \left( \frac{\pi }{p}\right) -N_3-2-\delta _{33} \ge 0 \\&g_7(X)=(N_4+N_5)\sin \left( \frac{\pi }{p}\right) -N_5-2 -\delta _{55} \ge 0 \\&g_8(X)=(N_6-N_3)^2+(N_4+N_5)^2-(N_6-N_3)(N_4+N_5)cos(\frac{2\pi }{p}-\beta )\le (N+3+N_5+2+\delta _{35})^2 \\&\mathrm{where} \\&\beta = \frac{\cos ^{-1}(N_6-N_3)^2+(N_4+N-5)^2-(N_3+N_5)^2}{2(N_6-N_3)(N_4+N_5)} \\&g_9(X) = N_6-2N_3-N_4-4-2\delta _{34} \ge 0 \\&g_10(X)=N_6-N_4-2N_5-4-2\delta _{56} \ge 0 \\&h(X)=\frac{N_6-N_4}{p}\,=\, \mathrm{integer},\\&\mathrm{where} \\&D_{\max }=220, p=(3,4,5), m_1,m_3=(1.75,2.0,2.25,2.5,2.75,3.0), \delta _{22},\delta _{33},\delta _{55},\delta _{35},\delta _{56},=0.5\\&17\le N_1 \le 96, 14\le N_2 \le 54, 14\le N_3 \le 51, 17\le N_4 \le 46, \\&14\le N_5 \le 51, 48\le N_6 \le 124, N_i=integer. \end{aligned}$$
Table 15 23-standard benchmark test functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Kaur, R., Singh, N. et al. SChoA: a newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications. Engineering with Computers 38 (Suppl 2), 975–1003 (2022). https://doi.org/10.1007/s00366-020-01233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01233-2

Keywords

Navigation