Skip to main content
Log in

Diagnostic and Predictive Role of DLL3 Expression in Gastroenteropancreatic Neuroendocrine Neoplasms

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare and heterogeneous subgroup of tumors with a challenging management because of their extremely variable biological and clinical behaviors. Due to their different prognosis, there is an urgent need to identify molecular markers which would enable to discriminate between grade 3 neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs), despite both being diagnosed mainly on the basis of proliferation index and cell differentiation. DLL3, a negative Notch regulator, is a promising molecular target highly expressed in several tumors with neuroendocrine features. We conducted a retrospective analysis of DLL3, RB1, and PD-L1 expression by immunohistochemistry (IHC), in formalin-fixed, paraffin-embedded (FFPE) samples from 47 patients with GEP-NENs. Then, we correlated the results with patients’ clinical features and outcome. The absence of DLL3 expression in 5 well-differentiated GEP-NETs with high-grade features (G3 NET), and the presence of DLL3 in 76.9% of poorly-differentiated NECs (G3 NEC), highlights DLL3 expression as a marker of G3 NECs (p = 0.007). DLL3 expression was correlated with RB1-loss (p < 0.001), negative 68 Ga-PET/CT scan (p = 0.001), and an unfavorable clinical outcome, with important implications for treatment response and patient’s follow-up. Median progression-free survival (PFS) and overall survival (OS) were 22.7 months (95% CI 6.1–68.8) and 68.8 months (95% CI 26.0–78.1), respectively, in patients with DLL3-negative tumor compared with 5.2 months (95% CI 2.5–18.5) and 9.5 months (95% CI 2.5–25.2), respectively, in patients with DLL3-positive tumor (PFS p = 0.0083, OS p = 0.0071). Therefore, combined with morphological cell analysis, DLL3 could represent a valuable histological marker, for the diagnosis of poorly differentiated NECs. The high percentage of DLL3 expression in NEC patients also highlights a potential opportunity for a DLL3 targeted therapy in this tumor subset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data is available upon reasonable request to the corresponding author

References

  1. Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker R V., Caplin M, Delle Fave G, Kaltsas GA, Krenning EP, Moss SF, Nilsson O, Rindi G, Salazar R, Ruszniewski P, Sundin A (2008) Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 9(1):61-72.

    Article  CAS  PubMed  Google Scholar 

  2. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, Shih T, Yao JC (2017) Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 3(10):1335-1342.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Klöppel G, Couvelard A, Hruban RH, Klimstra DS, Komminoth P, Osamura RY, Perren A, Rindi G (2017) WHO classification of neoplasms of the neuroendocrine pancreas. In: Lloyd RV, Osamura RY, Klöppel G, Rosai J (eds) WHO classification of tumours of endocrine organs. IARC Press, Lyon.

  4. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F, Cree IA (2020) The 2019 WHO classification of tumours of the digestive system. Histopathology 76(2):182-188.

    Article  PubMed  Google Scholar 

  5. Zatelli MC, Guadagno E, Messina E, Lo Calzo F, Faggiano A, Colao A, Albertelli M, Bianchi A, Circelli L, De Cicco F et al (2018) Open issues on G3 neuroendocrine neoplasms: Back to the future. Endocr Relat Cancer 25(6):R375-R384.

    Article  CAS  PubMed  Google Scholar 

  6. Kawasaki K, Fujii M, Sato T (2018) Gastroenteropancreatic neuroendocrine neoplasms: genes, therapies and models. Dis Model Mech 11(2).

  7. Oronsky B, Ma PC, Morgensztern D, Carter CA (2017) Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia 19(12):991-1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kwekkeboom DJ, Krenning EP (2016) Peptide Receptor Radionuclide Therapy in the Treatment of Neuroendocrine Tumors. Hematol Oncol Clin North Am 30(1):179-91.

    Article  PubMed  Google Scholar 

  9. Uri I, Grozinsky-Glasberg S (2018) Current treatment strategies for patients with advanced gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Clin Diabetes Endocrinol 4:16.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Herrera-Martínez AD, Hofland J, Hofland LJ, Brabander T, Eskens FALM, Gálvez Moreno MA, Luque RM, Castaño JP, de Herder WW, Feelders RA (2019) Targeted Systemic Treatment of Neuroendocrine Tumors: Current Options and Future Perspectives. Drugs 79(1):21-42.

    Article  PubMed  Google Scholar 

  11. Tsoli M, Chatzellis E, Koumarianou A, Kolomodi D, Kaltsas G (2019) Current best practice in the management of neuroendocrine tumors. Ther Adv Endocrinol Metab 10:2042018818804698.

    Article  PubMed  Google Scholar 

  12. Walter T, Brixi-Benmansour H, Lombard-Bohas C, Cadiot G (2012) New treatment strategies in advanced neuroendocrine tumours. Dig Liver Dis 44(2):95-105.

    Article  CAS  PubMed  Google Scholar 

  13. Bongiovanni A, Riva N, Ricci M, Liverani C, La Manna F, De Vita A, Foca F, Mercatali L, Severi S, Amadori D, Ibrahim T (2015) First-line chemotherapy in patients with metastatic gastroenteropancreatic neuroendocrine carcinoma. Onco Targets Ther 8:3613-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nigri G, Petrucciani N, Debs T, Mangogna LM, Crovetto A, Moschetta G, Persechino R, Aurello P, Ramacciato G (2018) Treatment options for PNET liver metastases: A systematic review. World J Surg Oncol 16(1):142.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Garcia-Carbonero R, Sorbye H, Baudin E et al (2016) ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology 103(2):186-94.

    Article  CAS  PubMed  Google Scholar 

  16. Kim JY, Hong SM, Ro JY. (2017) Recent updates on grading and classification of neuroendocrine tumors.Ann Diagn Pathol. 11–16.

  17. Tang KH, Basturk O, Sue JJ, Klimstra DS (2016) A Practical Approach to the Classification of WHO Grade 3 (G3) Well differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the Pancreas Am J Surg Pathol.Am J Surg Pathol. 40(9): 1192–1202.

  18. Aster JC, Pear WS, Blacklow SC (2017) The Varied Roles of Notch in Cancer. Annu Rev Pathol 12:245-275.

    Article  CAS  PubMed  Google Scholar 

  19. Kunnimalaiyaan M, Chen H (2007) Tumor Suppressor Role of Notch‐1 Signaling in Neuroendocrine Tumors. Oncologist 12(5):535-42.

    Article  CAS  PubMed  Google Scholar 

  20. Nakakura EK, Sriuranpong VR, Kunnimalaiyaan M, Hsiao EC, Schuebel KE, Borges MW, Jin N, Collins BJ, Nelkin BD, Chen H, Ball DW (2005) Regulation of neuroendocrine differentiation in gastrointestinal carcinoid tumor cells by notch signaling. J Clin Endocrinol Metab 90(7):4350-6.

    Article  CAS  PubMed  Google Scholar 

  21. Kunnimalaiyaan M, Yan S, Wong F, Zhang YW, Chen H, Skogseid B, Dackiw APB, Kebebew E (2005) Hairy Enhancer of Split-1 (HES-1), a Notch1 effector, inhibits the growth of carcinoid tumor cells. Surgery 138(6):1137-42.

    Article  PubMed  Google Scholar 

  22. George J, Walter V, Peifer M et al (2018) Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun 9(1):1048.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zou B, Zhou XL, Lai SQ, Liu JC (2018) Notch signaling and non-small cell lung cancer. Oncol Lett 15(3):3415-3421.

    PubMed  PubMed Central  Google Scholar 

  24. Puca L, Gavyert K, Sailer V, Conteduca V, Dardenne E, Sigouros M, Isse K, Kearney M, Vosoughi A, Fernandez L, Pan H, Motanagh S, Hess J, Donoghue AJ, Sboner A, Wang Y, Dittamore R, Rickman D, Nanus DM, Tagawa ST, Elemento O, Mosquera JM, Saunders L, Beltran H (2019) Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med 11(484).

  25. Liverani C, Bongiovanni A, Mercatali L, Foca F, Pieri F, De Vita A, Spadazzi C, Miserocchi G, Recine F, Riva N, Nicolini S, Severi S, Martinelli G, Ibrahim T (2018) Grading of neuroendocrine carcinomas: Correlation of 68 Ga-PET/CT scan with tissue biomarkers. Dis Markers 2018:6878409.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Segelov E, Chan D, Lawrence B, Pavlakis N, Kennecke HF, Jackson C, Law C, Singh S (2017) Identifying and Prioritizing Gaps in Neuroendocrine Tumor Research: A Modified Delphi Process With Patients and Health Care Providers to Set the Research Action Plan for the Newly Formed Commonwealth Neuroendocrine Tumor Collaboration. J Glob Oncol 3(4):380-388.

    Article  PubMed  Google Scholar 

  27. Perren A, Couvelard A, Scoazec JY et al (2017) ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Pathology-Diagnosis and Prognostic Stratification. Neuroendocrinology 105(3):196-200.

    Article  CAS  PubMed  Google Scholar 

  28. Saunders LR, Bankovich AJ, Anderson WC et al (2015) A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med 7(302):302ra136.

  29. Tanaka K, Isse K, Fujihira T, Takenoyama M, Saunders L, Bheddah S, Nakanishi Y, Okamoto I (2018) Prevalence of Delta-like protein 3 expression in patients with small cell lung cancer. Lung Cancer 115:116-120.

    Article  PubMed  Google Scholar 

  30. Thoma C (2019) Targeting DLL3 in neuroendocrine prostate cancer. Nat Rev Urol 16(6):330.

    Article  PubMed  Google Scholar 

  31. Alcala N, Leblay N, Gabriel AAG et al (2019) Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat Commun 10(1):3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sorbye H, Welin S, Langer SW, et al. (2013) Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): The NORDIC NEC study. Ann Oncol 24(1):152-60.

    Article  CAS  PubMed  Google Scholar 

  33. Sorbye H, Baudin E, Perren A (2018) The Problem of High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumors, Neuroendocrine Carcinomas, and Beyond. Endocrinol Metab Clin North Am 47(3):683-698.

    Article  PubMed  Google Scholar 

  34. Sigel CS, Krauss Silva VW, Reid MD, et al. Assessment of cytologic differentiation in high-grade pancreatic neuroendocrine neoplasms: A multi-institutional study. Cancer Cytopathol. 2018;126(1):44-53.

    Article  CAS  PubMed  Google Scholar 

  35. Jiao Y, Shi C, Edil BH et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331(6021):1199‐1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan CS, Laddha SV, Lewis PW et al (2018) ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup. Nat Commun (1):4158.

    Article  Google Scholar 

  37. Singhi AD, Klimstra DS. Well-differentiated pancreatic neuroendocrine tumours (PanNETs) and poorly differentiated pancreatic neuroendocrine carcinomas (PanNECs): concepts, issues and a practical diagnostic approach to high-grade (G3) cases. Histopathology. 2018;72(1):168-177.

    Article  PubMed  Google Scholar 

  38. Tang LH, Untch BR, Reidy DL, et al. Well-Differentiated Neuroendocrine Tumors with a Morphologically Apparent High-Grade Component: A Pathway Distinct from Poorly Differentiated Neuroendocrine Carcinomas. Clin Cancer Res. 2016;22(4):1011-1017.

    Article  CAS  PubMed  Google Scholar 

  39. Ito T, Matsuo A, Hassan WA (2016) Notch signaling and Tp53/RB1 pathway in pulmonary neuroendocrine tumorigenesis. Translational Cancer Research 5(2):213-219.

    Article  CAS  Google Scholar 

  40. Meder L, König K, Ozretić L, Schultheis AM, Ueckeroth F, Ade CP, Albus K, Boehm D, Rommerscheidt-Fuss U, Florin A, Buhl T, Hartmann W, Wolf J, Merkelbach-Bruse S, Eilers M, Perner S, Heukamp LC, Buettner R (2016) NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. Int J Cancer 138(4):927-38.

    Article  CAS  PubMed  Google Scholar 

  41. Rinke A, Gress TM (2017) Neuroendocrine Cancer, Therapeutic Strategies in G3 Cancers. Digestion 95(2):109-114.

    Article  CAS  PubMed  Google Scholar 

  42. Rudin CM, Pietanza MC, Bauer TM et al (2017) Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol 18(1):42-51.

    Article  CAS  PubMed  Google Scholar 

  43. Morgensztern D, Besse B, Greillier L, Santana-Davila R, Ready N, Hann CL, Glisson BS, Farago AF, Dowlati A, Rudin CM, Le Moulec S, Lally S, Yalamanchili S, Wolf J, Govindan R, Carbone DP (2019) Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: Results from the phase II TrINITY study. Clin Cancer Res 25(23):6958-6966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Owen DH, Giffin MJ, Bailis JM, Smit MAD, Carbone DP, He K (2019) DLL3: An emerging target in small cell lung cancer. J Hematol Oncol 12(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tang J, Shalabi A, Hubbard-Lucey VM (2018) Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol 29(1):84-91.

    Article  CAS  PubMed  Google Scholar 

  46. Cunha LL, Marcello MA, Rocha-Santos V, Ward LS (2017) Immunotherapy against endocrine malignancies: Immune checkpoint inhibitors lead the way. Endocr Relat Cancer 24(12):T261-T281.

    Article  CAS  PubMed  Google Scholar 

  47. Cavalieri S, Rivoltini L, Bergamini C, Locati LD, Licitra L, Bossi P (2018) Immuno-oncology in head and neck squamous cell cancers: News from clinical trials, emerging predictive factors and unmet needs. Cancer Treat Rev 65:78-86.

    Article  PubMed  Google Scholar 

  48. Meléndez B, Van Campenhout C, Rorive S, Remmelink M, Salmon I, D’Haene N (2018) Methods of measurement for tumor mutational burden in tumor tissue. Transl Lung Cancer Res 7(6):661-667.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Christofi T, Baritaki S, Falzone L, Libra M, Zaravinos A (2019) Current perspectives in cancer immunotherapy. Cancers (Basel) 11(10).

  50. Cavalcanti E, Armentano R, Valentini AM, Chieppa M, Caruso ML (2017) Role of PD-L1 expression as a biomarker for GEP neuroendocrine neoplasm grading. Cell Death Dis 8(8):e3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Milione M, Miceli R, Barretta F, Pellegrinelli A, Spaggiari P, Tagliabue G, Centonze G, Paolino C, Mangogna A, Kankava K, Pusceddu S, Giacomelli L, Corti A, Cotsoglou C, Mazzaferro V, Sozzi G, de Braud F, Pruneri G, Anichini A (2019) Microenvironment and tumor inflammatory features improve prognostic prediction in gastro-entero-pancreatic neuroendocrine neoplasms. J Pathol Clin Res 5(4):217-226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Gráinne Tierney and Matteo Marchesini for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

CL, AB, and TI designed the study. CL, AB, LM, FP, CS, GM, GDM, SR, ADV, CC, GR, and FR collected and analyzed the clinical and biological data. FF carried out the statistical analyses. CL, AB, and TI interpreted the data. CL and AB drafted the manuscript. LM and TI revised the manuscript for important intellectual content. All authors approved the final version of manuscript for submission.

Corresponding author

Correspondence to Chiara Liverani.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The study was reviewed and approved by IRST IRCCS Medical Scientific Committee and Ethics Committee. The study was carried out in accordance with the principles laid down in the 1964 Helsinki declaration.

Consent to Participate

Informed consent was obtained from all participants in the study.

Authors’ Disclosure

The authors declare that preliminary data of this research were previously presented as poster presentation in the XXII AIOM 2020 National Congress and in the 17th Annual ENETS Conference 2020.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liverani, C., Bongiovanni, A., Mercatali, L. et al. Diagnostic and Predictive Role of DLL3 Expression in Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr Pathol 32, 309–317 (2021). https://doi.org/10.1007/s12022-020-09657-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-020-09657-8

Keywords

Navigation