Skip to main content
Log in

The Inflammatory and Fibrotic Patterns of Hepatic Stellate Cells Following Coagulation Factors (VII or X)-Shielded Adenovirus Infection

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The role of coagulation factors on the inflammatory effect of adenovirus (Ad) is an unresolved question that was considered herein. Adenovirus-36(Ad36) and adenovector-5-GFP(Ad5-GFP) were prepared; then, they were loaded with VII or FX factors. The size/charge parameters and transduction efficiency were evaluated using fluorescent microscopy and Zetasizer, respectively. The Ad36-coagulation factor complexes were added on the stellate cells, LX-2. Thereafter, the expression levels of inflammatory and fibrotic genes including PKR, IL-1β, TNF-α, TIMP-1, collagen, and TGF-β were measured by qPCR and ELISA assays. The loading of FVII or FX factors not only increased the size/charge of Ad5-GFP but also enhanced the transduction rate up to 60% and 75%, respectively, compared to the controls (45%). The PKR expression analysis showed an upregulation following treatment with all Ad36 forms (P = 0.0152). The IL-1β and TNF-α cytokines analyses demonstrated that the Ad36-FVII complex elicited the highest inflammatory response (P = 0.05). Similarly, the fibrosis-related expression analysis revealed a more inductive role of FVII when loaded on Ad36, compared to the FX factor. The findings suggested that adenovirus elicited the innate inflammatory and activation state in the hepatic stellate cell. In addition, adenovirus shielded by FVII exhibited more innate inflammation as well as activation of the stellate cells than the FX-loaded virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rehman H, Silk AW, Kane MP, Kaufman HL (2016) Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 4:53. https://doi.org/10.1186/s40425-016-0158-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bommareddy PK, Patel A, Hossain S, Kaufman HL (2017) Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol 18:1–15. https://doi.org/10.1007/s40257-016-0238-9

    Article  PubMed  Google Scholar 

  3. Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C, Graham FL, Beaudet AL, Kochanek S (1998) Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 18:180. https://doi.org/10.1038/ng0298-180

    Article  CAS  PubMed  Google Scholar 

  4. Wold WS, Toth K (2013) Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 13:421–433. https://doi.org/10.2174/1566523213666131125095046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alba R, Bradshaw AC, Coughlan L, Denby L, McDonald RA, Waddington SN, Buckley SMK, Greig JA, Parker AL, Miller AM, Wang H, Lieber A, van Rooijen N, McVey JH, Nicklin SA, Baker AH (2010) Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood 116:2656–2664. https://doi.org/10.1182/blood-2009-12-260026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Atasheva S, Shayakhmetov DM (2016) 14—innate immune response to adenovirus vector administration in vivo. In: Curiel DT (ed) Adenoviral vectors for gene therapy, 2nd edn. Academic Press, San Diego, pp 349–366. https://doi.org/10.1016/B978-0-12-800276-6.00014-0

    Chapter  Google Scholar 

  7. Ponterio E, Gnessi L (2015) Adenovirus 36 and obesity: an overview. Viruses 7(7). https://doi.org/10.3390/v7072787

  8. Chu RL, Post DE, Khuri FR, Van Meir EG (2004) Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 10 (16):5299–5312. https:// doi:https://doi.org/10.1158/1078-0432.ccr-0349-03

  9. Glasgow JN, Everts M, Curiel DT (2006) Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 13:830. https://doi.org/10.1038/sj.cgt.7700928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alba R, Bradshaw AC, Mestre-Francés N, Verdier J-M, Henaff D, Baker AH (2012) Coagulation factor X mediates adenovirus type 5 liver gene transfer in non-human primates (Microcebus murinus). Gene Ther 19:109–113. https://doi.org/10.1038/gt.2011.87

    Article  CAS  PubMed  Google Scholar 

  11. Duffy MR, Doszpoly A, Turner G, Nicklin SA, Baker AH (2016) The relevance of coagulation factor X protection of adenoviruses in human sera. Gene Ther 23:592. https://doi.org/10.1038/gt.2016.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doronin K, Flatt JW, Di Paolo NC, Khare R, Kalyuzhniy O, Acchione M, Sumida JP, Ohto U, Shimizu T, Akashi-Takamura S, Miyake K, MacDonald JW, Bammler TK, Beyer RP, Farin FM, Stewart PL, Shayakhmetov DM (2012) Coagulation factor X activates innate immunity to human species C adenovirus. Science 338:795–798. https://doi.org/10.1126/science.1226625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kong D, Zhang F, Zhang Z, Lu Y, Zheng S (2013) Clearance of activated stellate cells for hepatic fibrosis regression: molecular basis and translational potential. Biomed Pharmacother 67(3):246–250. https://doi.org/10.1016/j.biopha.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  14. Friedman SL (2003) Liver fibrosis—from bench to bedside. J Hepatol 38:S38–S53. https://doi.org/10.1016/s0168-8278(02)00429-4

    Article  PubMed  Google Scholar 

  15. Alegre F, Pelegrin P, Feldstein AE (2017) Inflammasomes in liver fibrosis. Semin Liver Dis 37:119–127. https://doi.org/10.1055/s-0037-1601350

    Article  CAS  PubMed  Google Scholar 

  16. Shafigullina A, Zaikina E, Garanina E, Sakhapov D, Titova A, Mavlikeev M, Rizvanov A, Gumerova A, Kiassov A (2017) Effect of adenoviral transduction of hepatic stellate cells with Adv5-optHGF-RFP on their phenotype. Bionanoscience 7:419–422. https://doi.org/10.1007/s12668-016-0378-7

    Article  Google Scholar 

  17. Reetz J, Genz B, Meier C, Kowtharapu BS, Timm F, Vollmar B, Herchenroder O, Abshagen K, Putzer BM (2013) Development of adenoviral delivery systems to target hepatic stellate cells in vivo. PLoS One 8:e67091. https://doi.org/10.1371/journal.pone.0067091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hosseini SY, Sabahi F, Moazzeni SM, Modarressi MH, Saberi Firoozi M, Ravanshad M (2012) Construction and preparation of three recombinant adenoviruses expressing truncated NS3 and core genes of hepatitis C virus for vaccine purposes. Hepat Mon 12:e6130. https://doi.org/10.5812/hepatmon.6130

    Article  PubMed  PubMed Central  Google Scholar 

  19. LaBarre DD, Lowy RJ (2001) Improvements in methods for calculating virus titer estimates from TCID50 and plaque assays. J Virol Methods 96(2):107–126. https://doi.org/10.1016/S0166-0934(01)00316-0

    Article  CAS  PubMed  Google Scholar 

  20. Browne A, Tookman LA, Ingemarsdotter CK, Bouwman RD, Pirlo K, Wang Y, McNeish IA, Lockley M (2015) Pharmacological inhibition of β3 integrin reduces the inflammatory toxicities caused by oncolytic adenovirus without compromising anticancer activity. Cancer Res 75:2811–2821. https://doi.org/10.1158/0008-5472.can-14-3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghahestani SF, Shiri A, Moattari A, Sarvari J, Tamaddon AM, Hosseini SY (2020) The superior role of coagulation factor FX over FVII in adenoviral-mediated innate immune induction of the hepatocyte: an in vitro experiment. Clin Exp Hepatol 6(3):199–206. https://doi.org/10.5114/ceh.2020.99512

    Article  PubMed  PubMed Central  Google Scholar 

  22. Varnavski AN, Calcedo R, Bove M, Gao G, Wilson JM (2005) Evaluation of toxicity from high-dose systemic administration of recombinant adenovirus vector in vector-naïve and pre-immunized mice. Gene Ther 12:427. https://doi.org/10.1038/sj.gt.3302347

    Article  CAS  PubMed  Google Scholar 

  23. Gregory SM, Nazir SA, Metcalf JP (2011) Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol 6:357–374. https://doi.org/10.2217/fvl.11.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li P, Feng F, Pan E, Fan X, Yang Q, Guan M, Chen L, Sun C (2018) Scavenger receptor-mediated Ad5 entry and acLDL accumulation in monocytes/macrophages synergistically trigger innate responses against viral infection. Virology 519:86–98. https://doi.org/10.1016/j.virol.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  25. Schulte M, Sorkin M, Al-Benna S, Stupka J, Hirsch T, Daigeler A, Kesting MR, Steinau H-U, Jacobsen F, Steinstraesser L (2013) Innate immune response after adenoviral gene delivery into skin is mediated by AIM2, NALP3, DAI and mda5. Springerplus 2:234. https://doi.org/10.1186/2193-1801-2-234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krutzke L, Prill JM, Engler T, Schmidt CQ, Xu Z, Byrnes AP, Simmet T, Kreppel F (2016) Substitution of blood coagulation factor X-binding to Ad5 by position-specific PEGylation: preventing vector clearance and preserving infectivity. J Control Release 235:379–392. https://doi.org/10.1016/j.jconrel.2016.06.022

    Article  CAS  PubMed  Google Scholar 

  27. Irons EE, Flatt JW, Doronin K, Fox TL, Acchione M, Stewart PL, Shayakhmetov DM (2013) Coagulation factor binding orientation and dimerization may influence infectivity of adenovirus-coagulation factor complexes. J Virol 87:9610–9619. https://doi.org/10.1128/JVI.01070-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arnberg N (2009) Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 19:165–178. https://doi.org/10.1002/rmv.612

    Article  CAS  PubMed  Google Scholar 

  29. Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF (2014) Innate immunity to adenovirus. Hum Gene Ther 25:265–284. https://doi.org/10.1089/hum.2014.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lemaire PA, Anderson E, Lary J, Cole JL (2008) Mechanism of PKR activation by dsRNA. J Mol Biol 381:351–360. https://doi.org/10.1016/j.jmb.2008.05.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cole JL (2007) Activation of PKR: an open and shut case? Trends Biochem Sci 32:57–62. https://doi.org/10.1016/j.tibs.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  32. Dalet A, Gatti E, Pierre P (2015) Integration of PKR-dependent translation inhibition with innate immunity is required for a coordinated anti-viral response. FEBS Lett 589:1539–1545. https://doi.org/10.1016/j.febslet.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  33. Lee BH, Kushwah R, Wu J, Ng P, Palaniyar N, Grinstein S, Philpott DJ, Hu J (2010) Adenoviral vectors stimulate innate immune responses in macrophages through cross-talk with epithelial cells. Immunol Lett 134:93–102. https://doi.org/10.1016/j.imlet.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Q, Chen T, Bozkanat M, Ibe JCF, Christman JW, Raj JU, Zhou G (2015) Intratracheal instillation of high dose adenoviral vectors is sufficient to induce lung injury and fibrosis in mice. PLoS One 9:e116142. https://doi.org/10.1371/journal.pone.0116142

    Article  CAS  Google Scholar 

  35. Eichholz K, Mennechet FJD, Kremer EJ (2015) Human coagulation factor X-adenovirus type 5 complexes poorly stimulate an innate immune response in human mononuclear phagocytes. J Virol 89:2884. https://doi.org/10.1128/jvi.03576-14

    Article  PubMed  Google Scholar 

  36. Seki E, Brenner DA (2015) Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci 22:512–518. https://doi.org/10.1002/jhbp.245

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang H, Ju B, Nie Y, Song B, Xu Y, Gao P (2018) Adenovirusmediated knockdown of activin A receptor type 2A attenuates immuneinduced hepatic fibrosis in mice and inhibits interleukin17induced activation of primary hepatic stellate cells. Int J Mol Med 42:279–289. https://doi.org/10.3892/ijmm.2018.3600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weiskirchen R, Tacke F (2014) Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr 3:344–363. https://doi.org/10.3978/j.issn.2304-3881.2014.11.03

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boaru SG, Borkham-Kamphorst E, Tihaa L, Haas U, Weiskirchen R (2012) Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J Inflamm (Lond) 9:49. https://doi.org/10.1186/1476-9255-9-49

    Article  CAS  Google Scholar 

  40. Engler H, Machemer T, Philopena J, Wen S-F, Quijano E, Ramachandra M, Tsai V, Ralston R (2004) Acute hepatotoxicity of oncolytic adenoviruses in mouse models is associated with expression of wild-type E1a and induction of TNF-α. Virology 328:52–61. https://doi.org/10.1016/j.virol.2004.06.043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Negar Joharinia for her technical assistance during the project. The study was financially supported as an MSc thesis (Shiraz University of Medical Sciences) of Alireza shiri.

Funding

The study was supported by a Grants No. 23333-3 from Shiraz University of Medical sciences.

Author information

Authors and Affiliations

Authors

Contributions

AS, SFG, MR, and SYH have participated in bench works. AS, SFG, SYH, AM, and AMT have developed and optimize the methods at the start point. JS, NG and AM have designed the study. The idea came from SYH and all authors points of views. Data processing and analysis have performed by ARS, MR and JS. Manuscript writing and processing fulfilled by AS, MR and SYH and then edited by all the authors.

Corresponding authors

Correspondence to Afagh Moattari or Seyed Younes Hosseini.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiri, A., Sarvari, J., Firoozi Ghahestani, S. et al. The Inflammatory and Fibrotic Patterns of Hepatic Stellate Cells Following Coagulation Factors (VII or X)-Shielded Adenovirus Infection. Curr Microbiol 78, 718–726 (2021). https://doi.org/10.1007/s00284-020-02297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02297-5

Keywords

Navigation