Skip to main content
Log in

The predictions of dynamic liquid viscosity of potential alternative refrigerants with the modified Joback’s method

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper aims to find parameters for the contribution of elements “\({-}\)F” and “\({=}\)C\({<}\)” on the dynamic liquid viscosity. The found contribution of the element “\({-}\)F” and “\(=\)C\({<}\)” for the dynamic liquid viscosity, 707.816 for \(\eta _{\mathrm {a }}\) and \(-2.3648\) for \(\eta _{\mathrm {b}}\) for element “\({-}\)F” and \(-919.101\) for \(\eta _{\mathrm {a }}\) and 2.21487 for \(\eta _{\mathrm {b}}\) for element “\(=\)C\({<}\)” can be used to predict the dynamic viscosity of hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs). This paper also proposes a modified Joback’s method to improve the accuracy of the prediction of the dynamic liquid viscosity. The study of six potential refrigerants R-1224yd(Z), R-1233zd(E), R-1234yf, R-1234ze(E), R-1234ze(Z), and R-1336mzz(Z) shows that the proposed modified Joback’s method is more accurate than the original Joback’s method. The dynamic liquid viscosity of potential refrigerants R-1243zf and R-1225ye(Z) was determined with the modified Joback’s method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alam, M.J., Miyara, A., Kariya, K., Kontomaris, K.K.: Measurement of viscosity of cis-1,1,1,4,4,4-hexafluoro-2-butene (R-1336mzz(Z)) by tandem capillary tubes method. J. Chem. Eng. Data 63(5), 1706–1712 (2018). https://doi.org/10.1021/acs.jced.8b00036

    Article  Google Scholar 

  2. Cui, J., Yan, S., Bi, S., Wu, J.: Saturated liquid dynamic viscosity and surface tension of trans-1-chloro-3,3,3-trifluoropropene and dodecafluoro-2-methylpentan-3-one. J. Chem. Eng. Data 63(3), 751–756 (2018). https://doi.org/10.1021/acs.jced.7b00902

    Article  Google Scholar 

  3. Zhao, G., Bi, S., Fröba, A.P., Wu, J.: Liquid viscosity and surface tension of R1234yf and R1234ze under saturation conditions by surface light scattering. J. Chem. Eng. Data 59(4), 1366–1371 (2014). https://doi.org/10.1021/je5001457

    Article  Google Scholar 

  4. Alam, M.J.: Measurements and prediction of transport properties of low GWP refrigerants. Saga University, Saga (2018)

    Google Scholar 

  5. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., Wisconsin-Milwaukee, U.O., Laboratory, U.O.W.T.C., Laboratory, U.O.W.N.R.: The Molecular Theory of Gases and Liquids. Wiley, New York (1954)

  6. Chapman, S., Cowling, T.G., Burnett, D., Cercignani, C.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  7. Kaptay, G.: A new equation to estimate the concentration dependence of the viscosity of liquid metallic alloys from the heat of mixing data. In: Proceedings of microCAD 2003 Conference, pp. 23–28. University of Miskolc 2003

  8. Seetharaman, S., Sichen, D.: Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metall. Mater. Trans. B 25(4), 589–595 (1994). https://doi.org/10.1007/BF02650079

    Article  Google Scholar 

  9. Chung, T.H., Lee, L.L., Starling, K.E.: Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Ind. Eng. Chem. Fundam. 23(1), 8–13 (1984). https://doi.org/10.1021/i100013a002

    Article  Google Scholar 

  10. Ely, J.F., Hanley, H.J.M.: Prediction of transport properties. 1. Viscosity of fluids and mixtures. Ind. Eng. Chem. Fundam. 20(4), 323–332 (1981). https://doi.org/10.1021/i100004a004

    Article  Google Scholar 

  11. Collings, A.F., McLaughlin, I.L.: The transport coefficients for polyatomic liquids. J. Chem. Phys. 73(7), 3390–3395 (1980). https://doi.org/10.1063/1.440535

    Article  ADS  Google Scholar 

  12. Gharagheizi, F., Mirkhani, S.A., Keshavarz, M.H., Farahani, N., Tumba, K.: A molecular-based model for prediction of liquid viscosity of pure organic compounds: a quantitative structure property relationship (QSPR) approach. J. Taiwan Inst. Chem. Eng. 44(3), 359–364 (2013). https://doi.org/10.1016/j.jtice.2012.12.015

    Article  Google Scholar 

  13. Murata, A., Tochigi, K., Yamamoto, H.: Prediction of the liquid viscosities of pure components and mixtures using neural network and ASOG Group Contribution Methods. Mol. Simul. 30(7), 451–457 (2004). https://doi.org/10.1080/0892702042000198837

    Article  MATH  Google Scholar 

  14. Ferreira, I.L., de Castro, J.A., Garcia, A.: On the prediction of temperature-dependent viscosity of multicomponent liquid alloys. Continuum Mech. Thermodyn. 31(5), 1369–1385 (2019). https://doi.org/10.1007/s00161-019-00753-7

    Article  ADS  Google Scholar 

  15. Wileńska, D., Anusiewicz, I., Freza, S., Bobrowski, M., Laux, E., Uhl, S., Keppner, H., Skurski, P.: Predicting the viscosity and electrical conductivity of ionic liquids on the basis of theoretically calculated ionic volumes. Mol. Phys. 113(6), 630–639 (2015). https://doi.org/10.1080/00268976.2014.964344

    Article  ADS  Google Scholar 

  16. Joback, K.G., Reid, R.C.: Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 57(1–6), 233–243 (1987). https://doi.org/10.1080/00986448708960487

    Article  Google Scholar 

  17. Lai, N.A.: Prediction of the critical properties: a simple accurate strategy applied to environmentally friendly substances HFOs. Fluid Phase Equilibria 506, 112377 (2020). https://doi.org/10.1016/j.fluid.2019.112377

    Article  ADS  Google Scholar 

  18. Lai, N.A., Phan, T.T.H.: Review of the BACKONE equation of state and its applications. Mol. Phys. 115(9–12), 1041–1050 (2016). https://doi.org/10.1080/00268976.2016.1218562

    Article  ADS  Google Scholar 

  19. Phan, T.T.H., Lai, N.A.: Backone equation of state for cis-1,3,3,3-tetrafluoropropene (R1234ze(Z)). Vietnam J. Mech. 40(4), 387–395 (2018). 10.15625/0866-7136/13207

    Article  Google Scholar 

  20. Lydersen, A.: Estimation of critical properties of organic compounds by the method of group contributions. In: Engineering Experiment Station Report 3. College of Engineering, University of Wisconsin, Madison (1955)

  21. Joback, K.G.: A Unified Approach to Physical Property Estimation Using Multivariate Statistical Techniques. Massachusetts Institute of Technology, Cambridge (1984)

    Google Scholar 

  22. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308

    Article  MathSciNet  MATH  Google Scholar 

  23. Lai, N.A., Wendland, M., Fischer, J.: Description of linear siloxanes with PC-SAFT equation. Fluid Phase Equilibria 283(1–2), 22–30 (2009). https://doi.org/10.1016/j.fluid.2009.05.011

    Article  Google Scholar 

  24. Lai, N.A., Pham, T.S.: Description of cyclopropane with Backone equation of state. Russ. J. Phys. Chem. A 88(6), 978–983 (2014). https://doi.org/10.1134/s003602441406020x

    Article  Google Scholar 

  25. Sun, L.-Q., Zhu, M.-S., Han, L.-Z., Lin, Z.-Z.: Viscosity of difluoromethane and pentafluoroethane along the saturation line. J. Chem. Eng. Data 41(2), 292–296 (1996). https://doi.org/10.1021/je9502096

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 107.03-2016.10. The author gratefully acknowledges financial support from the NAFOSTED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Anh Lai.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, N.A. The predictions of dynamic liquid viscosity of potential alternative refrigerants with the modified Joback’s method. Continuum Mech. Thermodyn. 33, 1979–1987 (2021). https://doi.org/10.1007/s00161-020-00964-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00964-3

Keywords

Navigation