Skip to main content
Log in

Classic Scaling Fractal Fractance Approximation Circuits: Optimization Principle Analysis and Method

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the optimization principle and law of classic scaling fractal fractance approximation circuits (FACs). The scaling extension of FACs with negative half-order operational performance can facilitate the design of scaling fractal FACs with arbitrary-order fractional operators. This report summarizes the operational performance and mathematics describing of typical scaling fractal FACs. The scaling iteration algorithm was used to numerically calculate the impedance–admittance function of arbitrary real-order scaling fractal FACs, the features and defects of frequency-domain curves of the scaling fractal FACs were analyzed. Moreover, the methods of optimizing arbitrary-order scaling fractal FACs were analyzed theoretically, and symmetrical resistor–capacitor T-sections with certain universality were developed for FAC optimization. By comparing the approximation performances of FACs before and after optimization, the functions and indices for quantitatively analyzing the effects of circuit optimization were obtained and verified using examples. Fractance devices and active devices such as operational amplifiers can be combined to develop active fractional-order circuits and systems. Moreover, \(-\,0.2\)-order FACs before and after optimization were selected to construct fractional-order operational circuits and to obtain the results of the fractional-order differentiation and integration of a periodic square wave. The experimental simulation results agreed with the theoretical analysis. The test results prove that the FAC optimization proposed herein is theoretically correct, and that the circuit optimization methods are universal; these methods provide valuable references for solving the problem of FAC optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. A. Adhikary, S. Choudhary, S. Sen, Optimal design for realizing a grounded fractional order inductor using GIC. IEEE Trans. Circuits Syst. I Regul. Pap. 65(8), 2411–3242 (2018)

    Article  MathSciNet  Google Scholar 

  2. A. Adhikary, S. Sen, K. Biswas, Realization and study of a fractional order resonator using an obtuse angle fractor. in Proceedings of the IEEE Students’ Technology Symposium (2016), pp. 120–125

  3. P. P. Arya, S. Chakrabarty, A robust internal model based fractional order controller for fractional order plus time delay processes. IEEE Control Syst. Lett. (2020)

  4. G. Carlson, C. Halijak, Approximation of fractional capacitors (1/s)1/n) by a regular Newton process. IEEE Trans. Circuit Theory. 11(2), 210–213 (1964)

    Article  Google Scholar 

  5. G. Carlson, C. Halijak, Approximations of fixed impedances. IRE Trans. Circuit Theory. 9(3), 302–303 (1962)

    Article  Google Scholar 

  6. A. Charef, H.H. Sun, Y.Y. Tsao, B. Onaral, Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Chen, B. Cui, Y.Q. Chen, Observer-based output feedback control for a boundary controlled fractional reaction diffusion system with spatially-varying diffusivity. IET Control Theory Appl. 12(11), 1561–1572 (2018)

    Article  MathSciNet  Google Scholar 

  8. Y.Q. Chen, F. Quagliotti, Y.M. Zhang, K. Valavanis, Special Issue: unmanned aircraft systems. J Intell Robot Syst 84, 1–4 (2016)

    Article  Google Scholar 

  9. L. Chen, N. Saikumar, S.H. Hosseinnia, Development of robust fractional-order reset control. IEEE Trans. Control Syst. Technol. 28(4), 1404–1417 (2019)

    Article  Google Scholar 

  10. D. Ding, S.J. Li, N. Wang, Dynamics analysis of fractional-order memristive chaotic system. J. Harbin Inst. Technol. (New Ser.). 27(2), 65–74 (2020)

    Google Scholar 

  11. I. Dassios, G. Tzounas, F. Milano, Generalized fractional controller for singular systems of differential equations. J. Comput. Appl. Math. 378, 112919 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Ding, J. Wang, W.X. Zheng, Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions. IEEE Trans. Ind. Electron. 62(9), 5899–5909 (2015)

    Article  Google Scholar 

  13. F.D. Ge, Y.Q. Chen, Observer design for semilinear time fractional diffusion systems with spatially varying parameters. SSRN Electron. J. (2018)

  14. Z.R. Guo, Q.Y. He, X. Yuan, Y.F. Pu, Rational approximation of arbitrary order operators — Strange scaling equation. J. Sichuan Univ. (Nat. Sci. Ed.). 57(3), 495–504 (2020)

    Google Scholar 

  15. T.C. Haba, G. Ablart, Camps, Olivie, influence of the electrical parameters on the input impedance of a fractal structure realised on silicon. Chaos Solitons Fractals 24(2), 479–490 (2005)

    Article  Google Scholar 

  16. T.C. Haba, G.L. Loum, G. Ablart, An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension. Chaos Solitons Fractals 33(2), 364–373 (2007)

    Article  Google Scholar 

  17. E.M. Hamed, A.M. Abdelaty, L.A. Said, A.G. Radwan, Effect of different approximation techniques on fractional-order KHN filter design. Circuits Syst. Signal Process. 37(2), 1–31 (2018)

    Google Scholar 

  18. E.M. Hamed, L.A. Said, A.H. Madian, A.G. Radwan, On the approximations of CFOA-based fractional-order inverse filters. Circuits Systems Signal Process. 39(1), 2–29 (2020)

    Article  Google Scholar 

  19. C. Huang, H. Liu, X.P. Chen, M.S. Zhang, L. Ding, J.D. Cao, A. Ahmed, Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model. Phys. A: Statal Mech. Appl. 554, 124136 (2020)

    Article  MathSciNet  Google Scholar 

  20. Q.Y. He, Y.F. Pu, B. Yu, X. Yuan, A class of fractal-chain fractance approximation circuit. Int. J. Electron. 107(10), 1–21 (2020)

    Article  Google Scholar 

  21. Q.Y. He, Y.F. Pu, B. Yu, X. Yuan, Scaling fractal-chuan fractance approximation circuits of arbitrary order. Circuits Syst. Signal Process. 38(11), 4933–4958 (2019)

    Article  Google Scholar 

  22. Z.O. Jiao, Y.Q. Chen, Stability of fractional-order linear time-invariant systems with multiple noncommensurate orders. Comput. Math. Appl. 64(10), 3053–3058 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Luo, Y. Chen, Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica. 45(10), 2446–2450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. S.H. Liu, Fractal model for the ac response of a rough interface. Phys. Rev. Lett. 55(5), 529–532 (1985)

    Article  Google Scholar 

  25. P.P. Liu, X. Yuan, Approximation performance analysis of Oustaloup rational approximation of ideal fractance. J. Sichuan Univ. (Eng. Sci. Ed.) 48(2), 147–154 (2016)

    Google Scholar 

  26. H. Monsef, A. Abazari, B. Wu, Load frequency control by de-loaded wind farm using the optimal fuzzy-based PID droop controller. IET Renew. Power Gener. 13(1), 180–190 (2019)

    Article  Google Scholar 

  27. M. Nakagawa, K. Sorimachi, Basic characteristics of a fractance device. IEICE Trans. Fundam. Electron. Commun. Comput. E75-A(12), 1814–1819 (1995)

    Google Scholar 

  28. K.B. Oldham, J. Spanier, The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order (Academic Press, New York, 1974).

    MATH  Google Scholar 

  29. Y.F. Pu, Z. Yi, J.L. Zhou, Fractional Hopfield neural networks: fractional dynamic associative recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2319–2333 (2017)

    Article  MathSciNet  Google Scholar 

  30. Y.F. Pu, X. Yuan, B. Yu, Analog circuit implementation of fractional-order memristor: arbitrary-order lattice scaling fracmemristor. IEEE Trans. Circuits Syst. I Regul. Pap. 65(9), 2903–2916 (2018)

    Article  MathSciNet  Google Scholar 

  31. Y.F. Pu, N. Zhang, H. Wang, Fractional-order memristive predictor: arbitrary-order string scaling fracmemristor based prediction model of trading price of future. IEEE Intell. Syst. 35(2), 65–77 (2020)

    Article  Google Scholar 

  32. B. Ross, Brief history and exposition of the fundamental theory of fractional calculus. Springer Lect. Notes Math. 57, 1–36 (1975)

    Google Scholar 

  33. D. Roy, C. Suhash, B.A. Shenoi, Distributed and lumped RC realization of a Constant Argument Impedance. J. Frankl. Inst. 282(5), 318–329 (1966)

    Article  Google Scholar 

  34. D. Sierociuk, I. Podlubny, I. Petras, Experimental evidence of variable-order behavior of ladders and nested ladders. IEEE Trans. Control Syst. Technol. 21(2), 459–466 (2013)

    Article  Google Scholar 

  35. A.K. Singh, Fractionally delayed Kalman filter. IEEE/CAA J. Autom. Sin. 7(1), 169–177 (2020)

    Article  MathSciNet  Google Scholar 

  36. H.G. Sun, H. Sheng, Y.Q. Chen, W. Chen, Z.B. Yu, A dynamic-order fractional dynamic system. Chin. Phys. Lett. 30(4), 4 (2013)

    Article  Google Scholar 

  37. J.Q. Tan, S. Tang, X.L. Zhu, Theory and Application of Continued Fraction (Science Press, Beijing, 2007).

    Google Scholar 

  38. L. Tao, X. Yuan, Z. Yi, P.P. Liu, Analysis of operational characteristics and approximation performance on Roy fractal fractance approximation circuits. Sci. Technol. Eng. 15(34), 81–87 (2015)

    Google Scholar 

  39. G. Tsirimokou, A systematic procedure for deriving rc networks of fractional-order elements emulators using MATLAB. AEUE Int. J. Electron. Commun. 78, 7–14 (2017)

    Article  Google Scholar 

  40. J. Valsa, J. Vlach, RC models of a constant phase element. Int. J. Circuit Theory Appl. 41(1), 59–67 (2013)

    Google Scholar 

  41. J. Wang, C.F. Shao, Y.Q. Chen, Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance. Mechatronics 53, 8–19 (2018)

    Article  Google Scholar 

  42. D.Y. Xue, Fractional Calculus and Fractional-Order Control (Science Press, Beijing, 2018).

    Google Scholar 

  43. X. Yuan, Mathematical Principles of Fractance Approximation Circuits (Science Press, Beijing, 2015).

    Google Scholar 

  44. X. Yuan, G.Y. Feng, 2015 Proceedings of the 26th Academic Annual Conference of Circuits and Systems Branch, Chinese Institute of Electronics Chang Sha, China, October 23–26, (2015), pp. 295

  45. B. Yu, Q.Y. He, X. Yuan, Scaling fractal-lattice franctance approximation circuits of arbitrary order and irregular lattice type scaling equation. Acta Phys. Sin. 67(7), 070202 (2018)

    Article  Google Scholar 

  46. Z. Yuan, X. Yuan, On Zero-Pole distribution of regular RC fractal fractance approximation circuits. Acta Eletron. Sin. 45(10), 2511–2520 (2017)

    Google Scholar 

  47. B. Yu, Q.Y. He, X. Yuan, L.X. Yang, Approximation performance analyses and applications of f characteristics in fractance approximation circuit. J. Sichuan Univ. (Nat. Sci. Ed.), 55(2) (2018)

  48. H. Zhu, S. Zhou, J. Zhang, Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons Fractals 26(3), 1595–1603 (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YR., He, QY. & Yuan, X. Classic Scaling Fractal Fractance Approximation Circuits: Optimization Principle Analysis and Method. Circuits Syst Signal Process 40, 2659–2681 (2021). https://doi.org/10.1007/s00034-020-01606-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01606-4

Keywords

Navigation