Skip to main content
Log in

In silico comparative analysis of Aeromonas Type VI Secretion System

  • Bacterial Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Aeromonas are bacteria broadly spread in the environment, particularly in aquatic habitats and can induce human infections. Several virulence factors have been described associated with bacterial pathogenicity, such as the Type VI Secretion System (T6SS). This system translocates effector proteins into target cells through a bacteriophage-like contractile structure encoded by tss genes. Here, a total of 446 Aeromonas genome sequences were screened for T6SS and the proteins subjected to in silico analysis. The T6SS-encoding locus was detected in 243 genomes and its genes are encoded in a cluster containing 13 core and 5 accessory genes, in highly conserved synteny. The amino acid residues identity of T6SS proteins ranges from 78 to 98.8%. In most strains, a pair of tssD and tssI is located upstream the cluster (tssD-2, tssI-2) and another pair was detected distant from the cluster (tssD-1, tssI-1). Significant variability was seen in TssI (VgrG) C-terminal region, which was sorted in four groups based on its sequence length and protein domains. TssI containing ADP-ribosyltransferase domain are associated exclusively with TssI-1, while genes coding proteins carrying DUF4123 (a conserved domain of unknown function) were observed downstream tssI-1 or tssI-2 and escort of possible effector proteins. Genes coding proteins containing DUF1910 and DUF1911 domains were located only downstream tssI-2 and might represent a pair of toxin/immunity proteins. Nearly all strains display downstream tssI-3, that codes for a lysozyme family domain protein. These data reveal that Aeromonas T6SS cluster synteny is conserved and the low identity observed for some genes might be due to species heterogeneity or its niche/functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hayes CS, Aoki SK, Low DA (2010) Bacterial contact-dependent delivery systems. Annu Rev Genet 44:71–90. https://doi.org/10.1146/annurev.genet.42.110807.091449

    Article  CAS  PubMed  Google Scholar 

  2. Tseng TT, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9(Suppl 1):S2. https://doi.org/10.1186/1471-2180-9-S1-S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cianfanelli FR, Monlezun L, Coulthurst SJ (2016) Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24(1):51–62. https://doi.org/10.1016/j.tim.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  4. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104(39):15508–15513. https://doi.org/10.1073/pnas.0706532104

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104. https://doi.org/10.1186/1471-2164-10-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E (2015) The Type VI Secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet 11(10):e1005545. https://doi.org/10.1371/journal.pgen.1005545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B, Guzzo M, Flaugnatti N, Legrand P, Journet L, Fronzes R, Mignot T, Cambillau C, Cascales E (2016) Priming and polymerization of a bacterial contractile tail structure. Nature. 531(7592):59–63. https://doi.org/10.1038/nature17182

    Article  CAS  PubMed  Google Scholar 

  8. Zoued A, Durand E, Santin YG, Journet L, Roussel A, Cambillau C et al (2017) TssA: the cap protein of the Type VI secretion system tail. Bioessays 39(10). https://doi.org/10.1002/bies.201600262

  9. Cianfanelli FR, Alcoforado Diniz J, Guo M, De Cesare V, Trost M, Coulthurst SJ (2016) VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 12(6):e1005735. https://doi.org/10.1371/journal.ppat.1005735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M, Rocha EPC (2016) Identification of protein secretion systems in bacterial genomes. Sci Rep 6:23080. https://doi.org/10.1038/srep230801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coulthurst S (2019) The Type VI secretion system: a versatile bacterial weapon. Microbiology 165:503–515. https://doi.org/10.1099/mic.0.000789

    Article  CAS  PubMed  Google Scholar 

  12. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC et al (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103(5):1528–1533. https://doi.org/10.1073/pnas.0510322103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 312(5779):1526–1530. https://doi.org/10.1126/science.1128393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hood RD, Singh P, Hsu F, Guvener T, Carl MA, Trinidad RR et al (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7(1):25–37. https://doi.org/10.1016/j.chom.2009.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA et al (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 44(4):344–361. https://doi.org/10.1016/j.micpath.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  16. Bernal P, Llamas MA, Filloux A (2018) Type VI secretion systems in plant-associated bacteria. Environ Microbiol 20(1):1–15. https://doi.org/10.1111/1462-2920.13956

    Article  PubMed  Google Scholar 

  17. Chen L, Zou Y, She P, Wu Y (2015) Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res 172:19–25. https://doi.org/10.1016/j.micres.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  18. Sana TG, Lugo KA, Monack DM (2017) T6SS: the bacterial “fight club” in the host gut. PLoS Pathog 13(6):e1006325. https://doi.org/10.1371/journal.ppat.1006325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jani AJ, Cotter PA (2010) Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8(1):2–6. https://doi.org/10.1016/j.chom.2010.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ray A, Schwartz N, de Souza Santos M, Zhang J, Orth K, Salomon D (2017) Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities. EMBO Rep 18(11):1978–1990. https://doi.org/10.15252/embr.201744226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sana TG, Soscia C, Tonglet CM, Garvis S, Bleves S (2013) Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. PLoS One 8(10):e76030. https://doi.org/10.1371/journal.pone.0076030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beaz-Hidalgo R, Hossain MJ, Liles MR, Figueras MJ (2015) Strategies to avoid wrongly labelled genomes using as example the detected wrong taxonomic affiliation for Aeromonas genomes in the GenBank database. PLoS One 10(1):e0115813. https://doi.org/10.1371/journal.pone.0115813

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parte AC (2018) LPSN - list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68(6):1825–1829. https://doi.org/10.1099/ijsem.0.002786

    Article  PubMed  Google Scholar 

  24. Fernández-Bravo A, Figueras MJ (2020) An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms 8:129. https://doi.org/10.3390/microorganisms8010129

    Article  CAS  PubMed Central  Google Scholar 

  25. Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23(1):35–73. https://doi.org/10.1128/CMR.00039-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parker JL, Shaw JG (2011) Aeromonas spp. clinical microbiology and disease. J Inf Secur 62(2):109–118. https://doi.org/10.1016/j.jinf.2010.12.003

    Article  Google Scholar 

  27. Teunis P, Figueras MJ (2016) Reassessment of the enteropathogenicity of mesophilic Aeromonas species. Front Microbiol 7:1395. https://doi.org/10.3389/fmicb.2016.01395

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kirov SM, Barnett TC, Pepe CM, Strom MS, Albert MJ (2000) Investigation of the role of type IV Aeromonas pilus (Tap) in the pathogenesis of Aeromonas gastrointestinal infection. Infect Immun 68(7):4040–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heuzenroeder MW, Wong CY, Flower RL (1999) Distribution of two hemolytic toxin genes in clinical and environmental isolates of Aeromonas spp.: correlation with virulence in a suckling mouse model. FEMS Microbiol Lett 174(1):131–136. https://doi.org/10.1111/j.1574-6968.1999.tb13559.x

    Article  CAS  PubMed  Google Scholar 

  30. Chopra AK, Peterson JW, Xu XJ, Coppenhaver DH, Houston CW (1996) Molecular and biochemical characterization of a heat-labile cytotonic enterotoxin from Aeromonas hydrophila. Microb Pathog 21(5):357–377. https://doi.org/10.1006/mpat.1996.0068

    Article  CAS  PubMed  Google Scholar 

  31. Xu XJ, Ferguson MR, Popov VL, Houston CW, Peterson JW, Chopra AK (1998) Role of a cytotoxic enterotoxin in Aeromonas-mediated infections: development of transposon and isogenic mutants. Infect Immun 66(8):3501–3509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR (2016) Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification. Front Microbiol 7:1337. https://doi.org/10.3389/fmicb.2016.01337

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rosenzweig JA, Chopra AK (2013) Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems. Front Cell Infect Microbiol 3:70. https://doi.org/10.3389/fcimb.2013.00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vilches S, Urgell C, Merino S, Chacon MR, Soler L, Castro-Escarpulli G et al (2004) Complete type III secretion system of a mesophilic Aeromonas hydrophila strain. Appl Environ Microbiol 70(11):6914–6919. https://doi.org/10.1128/AEM.70.11.6914-6919.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J et al (2006) Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol 188(23):8272–8282. https://doi.org/10.1128/JB.00621-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tekedar HC, Abdelhamed H, Kumru S, Blom J, Karsi A, Lawrence ML (2019) Comparative genomics of Aeromonas hydrophila secretion systems and mutational analysis of hcp1 and vgrG1 genes from T6SS. Front Microbiol 9:3216. https://doi.org/10.3389/fmicb.2018.03216

    Article  PubMed  PubMed Central  Google Scholar 

  37. Suarez G, Sierra JC, Erova TE, Sha J, Horneman AJ, Chopra AK (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192(1):155–168. https://doi.org/10.1128/JB.01260-09

    Article  CAS  PubMed  Google Scholar 

  38. De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA, Smits TH (2011) Comparative genomics of the Type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics 12:576. https://doi.org/10.1186/1471-2164-12-576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J et al (2008) The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9:427. https://doi.org/10.1186/1471-2164-9-427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brouwer S, Pustelny C, Ritter C, Klinkert B, Narberhaus F, Haussler S (2014) The PqsR and RhlR transcriptional regulators determine the level of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa by producing two different pqsABCDE mRNA isoforms. J Bacteriol 196(23):4163–4171. https://doi.org/10.1128/JB.02000-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dekimpe V, Deziel E (2009) Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology. 155(Pt 3):712–723. https://doi.org/10.1099/mic.0.022764-0

    Article  CAS  PubMed  Google Scholar 

  42. Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL (2017) The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathog 13(7):e1006504. https://doi.org/10.1371/journal.ppat.1006504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liang X, Moore R, Wilton M, Wong MJ, Lam L, Dong TG (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A 112(29):9106–9111. https://doi.org/10.1073/pnas.1505317112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Unterweger D, Kostiuk B, Otjengerdes R, Wilton A, Diaz-Satizabal L, Pukatzki S (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J 34(16):2198–2210. https://doi.org/10.15252/embj.201591163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Unterweger D, Kostiuk B, Pukatzki S (2017) Adaptor proteins of type VI secretion system effectors. Trends Microbiol 25(1):8–10. https://doi.org/10.1016/j.tim.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  46. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L (2012) Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 7:18. https://doi.org/10.1186/1745-6150-7-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salomon D, Kinch LN, Trudgian DC, Guo X, Klimko JA, Grishin NV et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A 111(25):9271–9276. https://doi.org/10.1073/pnas.1406110111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Flaugnatti N, Le TT, Canaan S, Aschtgen MS, Nguyen VS, Blangy S et al (2016) A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 99(6):1099–1118. https://doi.org/10.1111/mmi.13292

    Article  CAS  PubMed  Google Scholar 

  49. Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350–353. https://doi.org/10.1038/nature12453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Unterweger D, Miyata ST, Bachmann V, Brooks TM, Mullins T, Kostiuk B et al (2014) The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 5:3549. https://doi.org/10.1038/ncomms4549

    Article  CAS  PubMed  Google Scholar 

  51. Sha J, Rosenzweig JA, Kozlova EV, Wang S, Erova TE, Kirtley ML et al (2013) Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology 159(Pt 6):1120–1135. https://doi.org/10.1099/mic.0.063495-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suarez G, Sierra JC, Kirtley ML, Chopra AK (2010) Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. Microbiology. 156(Pt 12):3678–3688. https://doi.org/10.1099/mic.0.041277-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ponnusamy, D.; Kozlova E.V.; Sha, J.; Erova, T.E.; Azar, S.R.; Fitts, E.C.; Kirtley, M.L.; Tiner, B.L.; Andersson, J.A., Grim, C.J.; Isom, R.P.; Hasan, N.A.; , Colwell, R.R.; Chopra, A.K. 2016. Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. PNAS vol. 113, p. 722–727 https://doi.org/10.1073/pnas.1523817113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fernández-Bravo A, Kilgore PB, Andersson JA, Blears E, Figueras MJ, Hasan NA, Colwell RR, Sha J, Chopra AK (2019) T6SS and ExoA of flesh-eating Aeromonas hydrophila in peritonitis and necrotizing fasciitis during mono- and polymicrobial infections. PNAS 116(48):24084–24092. https://doi.org/10.1073/pnas.1914395116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grim CJ, Kozlova EV, Ponnusamy D, Fitts EC, Sha J, Kirtley ML et al (2014) Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila. Appl Environ Microbiol 80(14):4162–4183. https://doi.org/10.1128/AEM.00486-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tekedar HC, Kumru S, Blom J, Perkins AD, Griffin MJ, Abdelhamed H, Karsi A, Lawrence ML (2019) Comparative genomics of Aeromonas veronii: identification of a pathotype impacting aquaculture globally. PLoS One 14(8):e0221018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A 113(27):E3931–E3940. https://doi.org/10.1073/pnas.1600428113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Joshi A, Kostiuk B, Rogers A, Teschler J, Pukatzki S, Yildiz FH (2017) Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol 25(4):267–279. https://doi.org/10.1016/j.tim.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  59. Coordinators NR (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44(D1):D7–D19. https://doi.org/10.1093/nar/gkv1290

    Article  CAS  Google Scholar 

  60. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome- based taxonomy. Nat Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42(Database issue):D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  64. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  65. Coulthurst SJ (2013) The Type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol 164(6):640–654. https://doi.org/10.1016/j.resmic.2013.03.017

    Article  CAS  PubMed  Google Scholar 

  66. Shalom G, Shaw JG, Thomas MS (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 153(Pt 8):2689–2699. https://doi.org/10.1099/mic.0.2007/006585-0

    Article  CAS  PubMed  Google Scholar 

  67. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stecher G, Tamura K, Kumar S (2020) Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol 37:1237–1239. https://doi.org/10.1093/molbev/msz312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. StataCorp (2017) Stata Statistical Software: Release 15. StataCorp LLC, College Station https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

    Google Scholar 

  72. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–D2D3. https://doi.org/10.1093/nar/gkw1129

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank CAPES/Ciências sem Fronteiras for scholarships.

Funding

This work was financially supported by Fundação Araucária, Brazilian Program of National Institutes of Science and Technology–INCT/Brazilian Research Council–CNPq/MCT, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo M. Cruz.

Additional information

Responsible Editor: Waldir P. Elias.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1358 kb)

ESM 2

(PDF 103 kb)

ESM 3

(PDF 130 kb)

ESM 4

(PDF 2177 kb)

ESM 5

(XLSX 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriel, B., de Campos Prediger, K., de Souza, E.M. et al. In silico comparative analysis of Aeromonas Type VI Secretion System. Braz J Microbiol 52, 229–243 (2021). https://doi.org/10.1007/s42770-020-00405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00405-y

Keywords

Navigation