Skip to main content

Advertisement

Log in

Macroalgae-derived biohydrogen production: biorefinery and circular bioeconomy

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Algae is considered as a promising third-generation biofuel feedstock. Macroalgae is an efficient source of biomass for biohydrogen production. Biohydrogen (H2) is believed as a sustainable and clean energy carrier with high-energy yield. The pretreatment is essential to enhance the hydrolytic process during dark fermentation. During pretreatment, some inhibitory substances are formed and are controlled by detoxification techniques. This review briefly covers the marine macroalgal species, pretreatment methods for biohydrogen production, and inhibitory components formed during the pretreatment. Lastly, this review suggests the techno economic assessment about life cycle, energy, and economic feasibility in biohydrogen production from macroalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Milledge JJ, Smith B, Dyer PW, Harvey P (2014) Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7:7194–7222. https://doi.org/10.3390/en7117194

    Article  Google Scholar 

  2. Notoya M (2010) Production of biofuel by macroalgae with preservation of marine resources and environment. In: Seckbach J, Einav R, Israel A (eds) Seaweeds and their role in globally changing environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 15. Springer, Dordrecht

    Google Scholar 

  3. Chung IK, Beardall J, Mehta S, Sahoo D, Stojkovic S (2011) Using marine macroalgae for carbon sequestration: a critical appraisal. J Appl Phycol 23:877–886. https://doi.org/10.1007/s10811-010-9604-9

    Article  Google Scholar 

  4. Wei N, Quarterman J, Jin Y (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77. https://doi.org/10.1016/j.tibtech.2012.10.009

    Article  Google Scholar 

  5. Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 102:1371–1381. https://doi.org/10.1016/j.apenergy.2012.07.031

    Article  Google Scholar 

  6. Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R (2019) A critical review on production of bioethanol from macroalgal biomass. Algal Res 42:101606. https://doi.org/10.1016/j.algal.2019.101606

    Article  Google Scholar 

  7. Bruhn A, Dahl J, Bangsø H et al (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604. https://doi.org/10.1016/j.biortech.2010.10.010

    Article  Google Scholar 

  8. Song M, Duc Pham H, Seon J, Chul Woo H (2015) Marine brown algae: a conundrum answer for sustainable biofuels production. Renew Sustain Energy Rev 50:782–792. https://doi.org/10.1016/j.rser.2015.05.021

    Article  Google Scholar 

  9. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286. https://doi.org/10.1016/j.copbio.2010.03.005

    Article  Google Scholar 

  10. Shi X, Kim DH, Shin HS, Jung KW (2013) Effect of temperature on continuous fermentative hydrogen production from Laminaria japonica by anaerobic mixed cultures. Bioresour Technol 144:225–231. https://doi.org/10.1016/j.biortech.2013.06.107

    Article  Google Scholar 

  11. Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv. 32:934–951. https://doi.org/10.1016/j.biotechadv.2014.04.007

    Article  Google Scholar 

  12. Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762. https://doi.org/10.1007/s10570-009-9309-x

    Article  Google Scholar 

  13. Xia A, Cheng J, Song W, Su H, Ding L, Lin R, Lu H, Liu J, Zhou J, Cen K (2015) Fermentative hydrogen production using algal biomass as feedstock. Renew Sustain Energy Rev 51:209–230. https://doi.org/10.1016/j.rser.2015.05.076

    Article  Google Scholar 

  14. Hay JXW, Wu TY, Juan JC, Jahim JM (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod Biorefining 7:334–352

    Article  Google Scholar 

  15. Mechery J, Thomas DM, Kumar CSP, Joseph L, Sylas VP (2019) Biohydrogen production from acidic and alkaline hydrolysates of paddy straw using locally isolated facultative bacteria through dark fermentation. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00515-0

  16. Rafa Ł, Ho I, Kucharska K et al (2018) Hydrogen production from biomass using dark fermentation. Renew Sust Energ Rev 91:665–694. https://doi.org/10.1016/j.rser.2018.04.043

    Article  Google Scholar 

  17. Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second-generation biofuel technologies. Bioresour Technol 101:1570–1580. https://doi.org/10.1016/j.biortech.2009.11.046

    Article  Google Scholar 

  18. Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: An answer to debatable land-based fuels. Bioresour Technol 102:10–16. https://doi.org/10.1016/j.biortech.2010.06.032

    Article  Google Scholar 

  19. Dragone G, Fernandes B, Vicente A, Teixeira J (2010) Third generation biofuels from microalgae. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 1355–1366. https://doi.org/10.1016/j.apenergy.2011.03.012

  20. Kothari R, Ahmad S, Pathak VV, Pandey A, Kumar A, Shankarayan R, Black PN, Tyagi VV (2019) Algal-based biofuel generation through flue gas and wastewater utilization: a sustainable prospective approach. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00533-y

  21. Wehr Kociolek J, Sheath R, Kociolek JP (2015) Brown algae. In: Freshwater algae of North America, chapter 19, 2nd edn. Academic Press, pp 851–871. https://doi.org/10.1016/B978-0-12-385876-4.00019-0Wehr

  22. Ganesan M, Trivedi N, Gupta V, Madhav SV, Radhakrishna Reddy C, Levine IA (2019) Seaweed resources in India - current status of diversity and cultivation: Prospects and challenges. Bot Mar 62:463–482. https://doi.org/10.1515/bot-2018-0056

    Article  Google Scholar 

  23. Shobana S, Kumar G, Bakonyi P, Saratale GD, al-Muhtaseb A'H, Nemestóthy N, Bélafi-Bakó K, Xia A, Chang JS (2017) A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresour Technol 244:1341–1348. https://doi.org/10.1016/j.biortech.2017.05.172

    Article  Google Scholar 

  24. Jiang R, Ingle KN, Golberg A (2016) Macroalgae (seaweed) for liquid transportation biofuel production: what is next ? Algal Res 14:48–57. https://doi.org/10.1016/j.algal.2016.01.001

    Article  Google Scholar 

  25. Bharathiraja B, Chakravarthy M, Ranjith Kumar R, Yogendran D, Yuvaraj D, Jayamuthunagai J, Praveen Kumar R, Palani S (2015) Aquatic biomass (algae) as a future feed stock for bio-refineries: a review on cultivation, processing and products. Renew Sustain Energy Rev 47:634–653. https://doi.org/10.1016/j.rser.2015.03.047

    Article  Google Scholar 

  26. Sahayaraj K, Rajesh S, Asha A et al (2014) Distribution and diversity assessment of the marine macroalgae at four southern districts of Tamil Nadu, India. Indian J Mar Sci 43:607–617

    Google Scholar 

  27. Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190. https://doi.org/10.1016/j.biortech.2012.10.025

    Article  Google Scholar 

  28. Polat M (2008) Biochemical composition of some red and brown macro algae from the Northeastern Mediterranean Sea. Int J Food Sci Nut 59:566–572. https://doi.org/10.1080/09637480701446524

    Article  Google Scholar 

  29. Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA, Kradolfer P, Soriano G, Ugarte R, Abreu MH, Bay-Larsen I, Hovelsrud G, Rødven R, Robledo D (2014) Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol 26:1939–1951. https://doi.org/10.1007/s10811-014-0304-8

    Article  Google Scholar 

  30. Mac Monagail M, Cornish L, Morrison L, Araújo R, Critchley AT (2017) Sustainable harvesting of wild seaweed resources. Eur J Phycol 52:371–390. https://doi.org/10.1080/09670262.2017.1365273

    Article  Google Scholar 

  31. Sabaani NJ, Peñaredondo MAE, Sepe MC (2019) Antibacterial activity of liquid soap with combined Sargassum sp. and Eucheuma sp. seaweed extracts. AACL Bioflux 12:1514–1523

    Google Scholar 

  32. Valderrama D, Cai J, Hishamunda N, Ridler N (2013) Social and economic dimensions of carrageenan seaweed farming. Fisheries and Aquaculture Technical Paper No. 580. Rome, FAO

  33. Gallagher JA, Turner LB, Adams JMM, Barrento S, Dyer PW, Theodorou MK (2018) Species variation in the effects of dewatering treatment on macroalgae. J Appl Phycol 30:2305–2316. https://doi.org/10.1007/s10811-018-1420-7

    Article  Google Scholar 

  34. Tedesco S, Marrero Barroso T, Olabi AG (2014) Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas. Renew Energy 62:527–534. https://doi.org/10.1016/j.renene.2013.08.023

    Article  Google Scholar 

  35. Milledge JJ, Harvey PJ (2016) Potential process “hurdles” in the use of macroalgae as feedstock for biofuel production in the British Isles. J Chem Technol Biotechnol 91:2221–2234. https://doi.org/10.1002/jctb.5003

    Article  Google Scholar 

  36. Kavitha S, Banu JR, Subitha G et al (2016) Impact of thermo-chemo-sonic pretreatment in solubilizing waste activated sludge for biogas production: Energetic analysis and economic assessment. Bioresour Technol 219:479–486. https://doi.org/10.1016/j.biortech.2016.07.115

    Article  Google Scholar 

  37. Kavitha S, Subbulakshmi P, Banu JR et al (2017) Enhancement of biogas production from microalgal biomass through cellulolytic bacterial pretreatment. Bioresour Technol. 233:34–43. https://doi.org/10.1016/j.biortech.2017.02.081

    Article  Google Scholar 

  38. Kannah RY, Kavitha S, Banu JR et al (2017) Synergetic effect of combined pretreatment for energy efficient biogas generation. Bioresour Technol. 232:235–246. https://doi.org/10.1016/j.biortech.2017.02.042

    Article  Google Scholar 

  39. Rajendran K, Drielak E, Sudarshan Varma V, Muthusamy S, Kumar G (2018) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Convers Biorefinery 8:471–483. https://doi.org/10.1007/s13399-017-0269-3

    Article  Google Scholar 

  40. Jung K, Kim D, Shin H (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 102:2745–2750. https://doi.org/10.1016/j.biortech.2010.11.042

    Article  Google Scholar 

  41. Schumacher M, Yanik J, Sinag A, Kruse A (2011) Hydrothermal conversion of seaweeds in a batch autoclave. J Supercrit Fluids 58:131–135. https://doi.org/10.1016/j.supflu.2011.04.009

    Article  Google Scholar 

  42. Bundhoo MAZ, Mohee R, Hassan MA (2015) Effects of pre-treatment technologies on dark fermentative biohydrogen production: a review. J Environ Manage 157:20–48. https://doi.org/10.1016/j.jenvman.2015.04.006

    Article  Google Scholar 

  43. Yeneneh AM, Chong S, Sen TK, Ang HM, Kayaalp A (2013) Effect of ultrasonic, microwave and combined microwave–ultrasonic pretreatment of municipal sludge on anaerobic digester performance. Water Air Soil Pollut 224:1559. https://doi.org/10.1007/s11270-013-1559-4

  44. Yin Y, Hu J, Wang J (2019) Fermentative hydrogen production from macroalgae Laminaria japonica pretreated by microwave irradiation. Int J Hydrogen Energy 44:10398–10406. https://doi.org/10.1016/j.ijhydene.2019.03.034

    Article  Google Scholar 

  45. Uma Rani R, Kaliappan S, Adish Kumar S, Rajesh Banu J (2012) Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge. Bioresour Technol 126:107–116. https://doi.org/10.1016/j.biortech.2012.09.027

    Article  Google Scholar 

  46. Kannah RY, Kavitha S, Banu JR et al (2017) Dispersion induced ozone pretreatment of waste activated biosolids: arriving biomethanation modelling parameters, energetic and cost assessment. Bioresour Technol. 244:679–687. https://doi.org/10.1016/j.biortech.2017.08.001

    Article  Google Scholar 

  47. Kumar MD, Tamilarasan K, Kaliappan S, Banu JR, Rajkumar M, Kim SH (2018) Surfactant assisted disperser pretreatment on the liquefaction of Ulva reticulata and evaluation of biodegradability for energy efficient biofuel production through nonlinear regression modelling. Bioresour Technol 255:116–122. https://doi.org/10.1016/j.biortech.2018.01.116

    Article  Google Scholar 

  48. Kavitha S, Banu JR, Ivinshaju CD et al (2016) Fenton mediated ultrasonic disintegration of sludge biomass : biodegradability studies , energetic assessment , and its economic viability. Bioresour Technol 221:1–8. https://doi.org/10.1016/j.biortech.2016.09.012

    Article  Google Scholar 

  49. Kotay SM, Das D (2009) Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge. Int J Hydrogen Energy 34:7489–7496. https://doi.org/10.1016/j.ijhydene.2009.05.109

    Article  Google Scholar 

  50. Nguyen TAD, Kim KR, Nguyen MT, Kim MS, Kim D, Sim SJ (2010) Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. Int J Hydrogen Energy 35:13035–13040. https://doi.org/10.1016/j.ijhydene.2010.04.062

    Article  Google Scholar 

  51. Gonzales RR, Sivagurunathan P, Kim SH (2016) Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation. Int J Hydrogen Energy 41:21678–21684. https://doi.org/10.1016/j.ijhydene.2016.06.198

    Article  Google Scholar 

  52. Sivagurunathan P, Kumar G, Mudhoo A, Rene ER, Saratale GD, Kobayashi T, Xu K, Kim SH, Kim DH (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew Sustain Energy Rev 77:28–42. https://doi.org/10.1016/j.rser.2017.03.091

    Article  Google Scholar 

  53. Park JH, Cheon HC, Yoon JJ, Park HD, Kim SH (2013) Optimization of batch dilute-acid hydrolysis for biohydrogen production from red algal biomass. Int J Hydrogen Energy 38:6130–6136. https://doi.org/10.1016/j.ijhydene.2013.01.050

    Article  Google Scholar 

  54. Lakaniemi AM, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 4:1–12. https://doi.org/10.1186/1754-6834-4-34

    Article  Google Scholar 

  55. Roy S, Kumar K, Ghosh S, Das D (2014) Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy 61:157–166. https://doi.org/10.1016/j.biombioe.2013.12.006

    Article  Google Scholar 

  56. Chang K, Chen X, Han Y et al (2016) Synergistic effects of surfactant-assisted ionic liquid pretreatment rice straw. Bioresour Technol 214:371–375. https://doi.org/10.1016/j.biortech.2016.04.113

    Article  Google Scholar 

  57. Kavitha S, Saji Pray S, Yogalakshmi KN, Adish Kumar S, Yeom IT, Rajesh banu J (2016) Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production. Environ Sci Pollut Res 23:2402–2414. https://doi.org/10.1007/s11356-015-5461-z

    Article  Google Scholar 

  58. Kavitha S, Stella PBC, Kaliappan S, Yeom IT, Banu JR (2016) Enhancement of anaerobic degradation of sludge biomass through surfactant-assisted bacterial hydrolysis. Process Saf Environ Prot 99:207–215. https://doi.org/10.1016/j.psep.2015.11.009

    Article  Google Scholar 

  59. Shanthi M, Rajesh Banu J, Sivashanmugam P (2018) Effect of surfactant assisted sonic pretreatment on liquefaction of fruits and vegetable residue: characterization, acidogenesis, biomethane yield and energy ratio. Bioresour Technol 264:35–41. https://doi.org/10.1016/j.biortech.2018.05.054

    Article  Google Scholar 

  60. Zhou J, Cen K (2017) Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production State Key Laboratory of Clean Energy Utilization, Zhejiang University, Department of Civil and Environmental Engineering Tohoku Univers. Bioresour Technol. 241:491–499. https://doi.org/10.1016/j.biortech.2017.05.114

    Article  Google Scholar 

  61. Kavitha S, Kannah RY, Gunasekaran M et al (2019) Rhamnolipid induced deagglomeration of anaerobic granular biosolids for energetically feasible ultrasonic homogenization and profitable biohydrogen. Int J Hydrogen Energy. 45:5890–5899. https://doi.org/10.1016/j.ijhydene.2019.04.063

    Article  Google Scholar 

  62. Srivastava N, Srivastava M, Kushwaha D, Gupta VK, Manikanta A, Ramteke PW, Mishra PK (2017) Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresour Technol 238:552–558. https://doi.org/10.1016/j.biortech.2017.04.077

    Article  Google Scholar 

  63. Zhao L, Cao GL, Wang AJ, Ren HY, Dong D, Liu ZN, Guan XY, Xu CJ, Ren NQ (2012) Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresour Technol 114:365–369. https://doi.org/10.1016/j.biortech.2012.03.076

    Article  Google Scholar 

  64. Banu JR, Tamilarasan T, Kavitha S, Gunasekaran M (2019) Energetically feasible biohydrogen production from sea eelgrass via homogenization through a surfactant, sodium tripolyphosphate. Int J Hydrogen Energy 45:1–11. https://doi.org/10.1016/j.ijhydene.2019.03.206

    Article  Google Scholar 

  65. Yin Y, Wang J (2018) Pretreatment of macroalgal Laminaria japonica by combined microwave-acid method for biohydrogen production. Bioresour Technol 268:52–59. https://doi.org/10.1016/j.biortech.2018.07.126

    Article  Google Scholar 

  66. Lee J, Li P, Jin H, Keun K (2013) Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour Technol 127:119–125. https://doi.org/10.1016/j.biortech.2012.09.122

    Article  Google Scholar 

  67. Ding L, Cheng J, Lin R, Deng C, Zhou J, Murphy JD (2019) Improving biohydrogen and biomethane co-production via two-stage dark fermentation and anaerobic digestion of the pretreated seaweed Laminaria digitata. J Clean Prod. 251:119666. https://doi.org/10.1016/j.jclepro.2019.119666

    Article  Google Scholar 

  68. Park JH, Yoon JJ, Park HD, Kim YJ, Lim DJ, Kim SH (2011) Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrogen Energy 36:13997–14003. https://doi.org/10.1016/j.ijhydene.2011.04.003

    Article  Google Scholar 

  69. Liu H, Wang G (2014) Fermentative hydrogen production from macro-algae Laminaria japonica using anaerobic mixed bacteria. Int J Hydrogen Energy 39:9012–9017. https://doi.org/10.1016/j.ijhydene.2014.03.244

    Article  Google Scholar 

  70. Rodrigues EL, Fonseca BC, Gelli VC, Meleiro LP, Furriel RPM, Reginatto V (2019) Enzymatically and/or thermally treated macroalgae biomass as feedstock for fermentative H2 production. Rev Mater 24:12363. https://doi.org/10.1590/S1517-707620190002.0678

  71. Yin Y, Wang J (2019) Hydrogen production and energy recovery from macroalgae Saccharina japonica by different pretreatment methods. Renew Energy 141:1–8. https://doi.org/10.1016/j.renene.2019.03.139

    Article  Google Scholar 

  72. Lin R, Deng C, Ding L, Bose A, Murphy JD (2019) Improving gaseous biofuel production from seaweed Saccharina latissima: the effect of hydrothermal pretreatment on energy efficiency. Energy Convers Manag 196:1385–1394. https://doi.org/10.1016/j.enconman.2019.06.044

    Article  Google Scholar 

  73. Kumar D, Eswari AP, Park J (2019) Biohydrogen generation from macroalgal biomass, Chaetomorpha antennina through surfactant aided microwave disintegration. 7:1–11. https://doi.org/10.3389/fenrg.2019.00078

  74. Kumar G, Cheon H, Kim S (2014) Effects of 5-hydromethylfurfural, levulinic acid and formic acid, pretreatment byproducts of biomass, on fermentative H 2 production from glucose and galactose. Int J Hydrogen Energy 39:16885–16890. https://doi.org/10.1016/j.ijhydene.2014.08.063

    Article  Google Scholar 

  75. Mondal D, Sharma M, Maiti P et al (2013) Fuel intermediates, agricultural nutrients and pure water from Kappaphycus alvarezii seaweed. RSC Adv. https://doi.org/10.1039/b000000x

  76. Jönsson LJ, Martín C (2015) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  77. Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. https://doi.org/10.1186/1754-6834-4-3

  78. Mirsiaghi M, Reardon KF (2015) Conversion of lipid-extracted Nannochloropsis salina biomass into fermentable sugars. Algal Res 8:145–152. https://doi.org/10.1016/j.algal.2015.01.013

    Article  Google Scholar 

  79. Srikanth S, Mohan SV, Babu VL, Sarma PN (2010) Metabolic shift and electron discharge pattern of anaerobic consortia as a function of pretreatment method applied during fermentative hydrogen production. Int J Hydrogen Energy 35:10693–10700. https://doi.org/10.1016/j.ijhydene.2010.02.055

    Article  Google Scholar 

  80. Cao L, Yu IKM, Cho D et al (2018) Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour Technol. 273:251–258. https://doi.org/10.1016/j.biortech.2018.11.013

    Article  Google Scholar 

  81. Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16. https://doi.org/10.1186/1754-6834-6-16

  82. Rhimou B, Hassane R, José M, Nathalie B (2010) The antibacterial potential of the seaweeds (Rhodophyceae) of the Strait of Gibraltar and the Mediterranean coast of Morocco. African J Biotechnol 9:6365–6372. https://doi.org/10.5897/AJB09.1911

    Article  Google Scholar 

  83. El Shafay SM, Ali SS, El-Sheekh MM (2016) Antimicrobial activity of some seaweed’s species from Red Sea, against multidrug resistant bacteria. Egypt J Aquat Res 42:65–74. https://doi.org/10.1016/j.ejar.2015.11.006

    Article  Google Scholar 

  84. Lin R, Cheng J, Ding L, Song W, Zhou J, Cen K (2015) Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation. Bioresour Technol 197:323–328. https://doi.org/10.1016/j.biortech.2015.08.105

    Article  Google Scholar 

  85. Nissilä ME, Li Y, Wu S, Puhakka JA (2012) Dark fermentative hydrogen production from neutralized acid hydrolysates of conifer pulp. Appl Biochem Biotechnol 2160–2169. https://doi.org/10.1007/s12010-012-9925-z

  86. Yang CF, Huang CR (2016) Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate. Bioresour Technol 214:311–318. https://doi.org/10.1016/j.biortech.2016.04.122

    Article  Google Scholar 

  87. El Harchi M, Fakihi Kachkach FZ, El Mtili N (2018) Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. South African J Bot 115:161–169. https://doi.org/10.1016/j.sajb.2018.01.021

    Article  Google Scholar 

  88. Roque LR, Morgado GP, Nascimento VM, Ienczak JL, Rabelo SC (2019) Liquid-liquid extraction: a promising alternative for inhibitors removing of pentoses fermentation. Fuel 242:775–787. https://doi.org/10.1016/j.fuel.2018.12.130

    Article  Google Scholar 

  89. Orozco RL, Redwood MD, Leeke GA, Bahari A, Santos RCD, Macaskie LE (2012) Hydrothermal hydrolysis of starch with CO2 and detoxification of the hydrolysates with activated carbon for bio-hydrogen fermentation. Int J Hydrogen Energy 37:6545–6553. https://doi.org/10.1016/j.ijhydene.2012.01.047

    Article  Google Scholar 

  90. Meinita MDN, Hong YK, Jeong GT (2012) Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst Eng 35:93–98. https://doi.org/10.1007/s00449-011-0608-x

    Article  Google Scholar 

  91. Hargreaves PI, Barcelos CA, da Costa ACA, Pereira N (2013) Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Bioresour Technol 134:257–263. https://doi.org/10.1016/j.biortech.2013.02.002

    Article  Google Scholar 

  92. Kumar G, Sivagurunathan P, Kobayashi T, Xu KQ, Kim SH (2015) Simultaneous removal of 5-hydroxy methyl furfural (5-HMF) and hydrogen production from acid (H2SO4) pretreated red-algal hydrolysate via hybrid immobilized cells. Algal Res 11:326–333. https://doi.org/10.1016/j.algal.2015.07.015

    Article  Google Scholar 

  93. Cheng J, Lin R, Song W, Xia A, Zhou J, Cen K (2015) ScienceDirect enhancement of fermentative hydrogen production from hydrolyzed water hyacinth with activated carbon detoxification and bacteria domestication. Int J Hydrogen Energy 40:2545–2551. https://doi.org/10.1016/j.ijhydene.2014.12.097

    Article  Google Scholar 

  94. Lee K, Min K, Choi O et al (2015) Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation. Bioresour Technol 187:228–234. https://doi.org/10.1016/j.biortech.2015.03.129

    Article  Google Scholar 

  95. Anburajan P, Pugazhendhi A, Park J et al (2017) Effect of 5-hydroxymethylfurfural (5-HMF) on high-rate continuous biohydro- gen production from galactose. Bioresour Technol. 247:1197–1200. https://doi.org/10.1016/j.biortech.2017.09.001

    Article  Google Scholar 

  96. Hu B, Li M, Wang Y, Zhu M (2018) Enhanced biohydrogen production from dilute acid pretreated sugarcane bagasse by detoxification and fermentation strategy. Int J Hydrogen Energy 2–10. https://doi.org/10.1016/j.ijhydene.2018.08.164

  97. Nguyen TH, Sunwoo IY, Jeong GT, Kim SK (2019) Detoxification of hydrolysates of the red seaweed Gelidium amansii for improved bioethanol production. Appl Biochem Biotechnol 188:977–990. https://doi.org/10.1007/s12010-019-02970-x

    Article  Google Scholar 

  98. Yin Y, Wang J (2019) Mechanisms of enhanced biohydrogen production from macroalgae by ferrous ion: insights into correlations of microbes and metabolites. Bioresour Technol 291:121808. https://doi.org/10.1016/j.biortech.2019.121808

    Article  Google Scholar 

  99. Zhao X, Xing D, Qi N, Zhao Y, Hu X, Ren N (2017) Deeply mechanism analysis of hydrogen production enhancement of Ethanoligenens harbinense by Fe2+ and Mg2+: monitoring at growth and transcription levels. Int J Hydrogen Energy 42:19695–19700. https://doi.org/10.1016/j.ijhydene.2017.06.038

    Article  Google Scholar 

  100. Zhang J, Fan C, Zang L (2017) Improvement of hydrogen production from glucose by ferrous iron and biochar. Bioresour Technol 245:98–105. https://doi.org/10.1016/j.biortech.2017.08.198

    Article  Google Scholar 

  101. Dhar BR, Elbeshbishy E, Nakhla G (2012) Influence of iron on sulfide inhibition in dark biohydrogen fermentation. Bioresour Technol 126:123–130. https://doi.org/10.1016/j.biortech.2012.09.043

    Article  Google Scholar 

  102. Yang G, Wang J (2018) Ultrasound combined with dilute acid pretreatment of grass for improvement of fermentative hydrogen production. Bioresour Technol. 275:10–18. https://doi.org/10.1016/j.biortech.2018.12.013

    Article  Google Scholar 

  103. Seghetta M, Romeo D, D’Este M et al (2017) Seaweed as innovative feedstock for energy and feed – evaluating the impacts through a life cycle assessment. J Clean Prod 150:1–15. https://doi.org/10.1016/j.jclepro.2017.02.022

    Article  Google Scholar 

  104. Ben N, Amine M, Ben M et al (2016) A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. ENERGY Convers Manag 119:257–265. https://doi.org/10.1016/j.enconman.2016.04.046

    Article  Google Scholar 

  105. Costa JC, Oliveira JV, Pereira MA et al (2015) Biohythane production from marine macroalgae Sargassum sp. coupling dark fermentation and anaerobic digestion. Bioresour Technol. https://doi.org/10.1016/j.biortech.2015.04.052

  106. Shi X, Jung KW, Kim DH, Ahn YT, Shin HS (2011) Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed cultures. Int J Hydrogen Energy 36:5857–5864. https://doi.org/10.1016/j.ijhydene.2011.01.125

    Article  Google Scholar 

  107. Postma PR, Akkerman RJ, Olivieri G (2018) Biorefinery of the macroalgae Ulva lactuca : extraction of proteins and carbohydrates by mild disintegration. 1281–1293

  108. Jung KW, Kim DH, Shin HS (2012) Continuous fermentative hydrogen and methane production from Laminaria japonica using a two-stage fermentation system with recycling of methane fermented effluent. Int J Hydrogen Energy 37:15648–15657. https://doi.org/10.1016/j.ijhydene.2012.03.113

    Article  Google Scholar 

  109. Magnusson M, Carl C, Mata L, de Nys R, Paul NA (2016) Seaweed salt from Ulva: a novel first step in a cascading biorefinery model. Algal Res 16:308–316. https://doi.org/10.1016/j.algal.2016.03.018

    Article  Google Scholar 

  110. Gajaria TK, Suthar P, Baghel RS, Balar NB, Sharnagat P, Mantri VA, Reddy CRK (2017) Integration of protein extraction with a stream of byproducts from marine macroalgae: a model forms the basis for marine bioeconomy. Bioresour Technol 243:867–873. https://doi.org/10.1016/j.biortech.2017.06.149

    Article  Google Scholar 

  111. Glasson CRK, Sims IM, Carnachan SM, de Nys R, Magnusson M (2017) A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Res 27:383–391. https://doi.org/10.1016/j.algal.2017.07.001

    Article  Google Scholar 

  112. Mhatre A, Gore S, Mhatre A, Trivedi N, Sharma M, Pandit R, Anil A, Lali A (2019) Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca. Renew Energy 132:742–751. https://doi.org/10.1016/j.renene.2018.08.012

    Article  Google Scholar 

  113. Trivedi N, Baghel RS, Bothwell J, Gupta V, Reddy CRK, Lali AM, Jha B (2016) An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep 6:1–8. https://doi.org/10.1038/srep30728

    Article  Google Scholar 

  114. Prabhu M, Chemodanov A, Gottlieb R, Kazir M, Nahor O, Gozin M, Israel A, Livney YD, Golberg A (2019) Starch from the sea: the green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. Algal Res 37:215–227. https://doi.org/10.1016/j.algal.2018.11.007

    Article  Google Scholar 

  115. Angell AR, Paul NA, de Nys R (2017) A comparison of protocols for isolating and concentrating protein from the green seaweed Ulva ohnoi. J Appl Phycol 29:1011–1026. https://doi.org/10.1007/s10811-016-0972-7

    Article  Google Scholar 

  116. Ng HM, Sin LT, Tee TT, Bee ST, Hui D, Low CY, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B Eng 75:176–200. https://doi.org/10.1016/j.compositesb.2015.01.008

    Article  Google Scholar 

  117. Cooney M, Maynard N, Cannizzaro C, Benemann J (2007) Two-phase anaerobic digestion for production of hydrogen-methane mixtures. Bioresour Technol 98:2641–2651. https://doi.org/10.1016/j.biortech.2006.09.054

    Article  Google Scholar 

  118. Yan Q, Zhao M, Miao H, Ruan W, Song R (2010) Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresour Technol 101:4508–4512. https://doi.org/10.1016/j.biortech.2010.01.073

    Article  Google Scholar 

  119. Bengtsson S, Werker A, Christensson M, Welander T (2008) Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour Technol 99:509–516. https://doi.org/10.1016/j.biortech.2007.01.020

    Article  Google Scholar 

  120. Kothari R, Shamshad A, Pathak VV, Pandey A, Kumar A, Shankarayan R, Black PN, Tyagi VV (2019) Algal-based biofuel generation through flue gas and wastewater utilization: a sustainable prospective approach. Biomass Conversion and Biorefinery 2019:1–24. https://doi.org/10.1007/s13399-019-00533-y

    Article  Google Scholar 

  121. Pilicka I, Blumberga D, Romagnoli F (2011) Life cycle assessment of biogas production from marine macroalgae: a Latvian scenario. Environmental and Climate technologies 6(1):69–78. https://doi.org/10.2478/v10145-011-0010-6

    Article  Google Scholar 

  122. Sathyaprakasan P, Kannan G (2015) Economics of bio-hydrogen production. International Journal of Environmental Science and Development 6(5):352

    Article  Google Scholar 

  123. Yukesh Kannah R, Kavitha S, Sivashanmugham P, Kumar G, Nguyen DD, Chang SW, Rajesh Banu J (2019) Biohydrogen production from rice straw: effect of combinative pretreatment, modelling assessment and energy balance consideration. Int J Hydrogen Energy 44:2203–2215. https://doi.org/10.1016/j.ijhydene.2018.07.201

    Article  Google Scholar 

  124. Kumar K, Kobayashi T, Xu K et al (2016) Evaluation of different pretreatments on organic matter solubilization and hydrogen fermentation of mixed microalgae consortia. Int J Hydrogen Energy 41:21628–21640. https://doi.org/10.1016/j.ijhydene.2016.05.195

    Article  Google Scholar 

  125. Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energy Rev 55:909–941. https://doi.org/10.1016/j.rser.2015.11.026

    Article  Google Scholar 

  126. Mthethwa NP, Nasr M, Bux F, Kumari S (2018) Utilization of Pistia stratiotes (aquatic weed) for fermentative biohydrogen: electron-equivalent balance, stoichiometry, and cost estimation. Int J Hydrogen Energy 43:1–13. https://doi.org/10.1016/j.ijhydene.2018.03.099

    Article  Google Scholar 

  127. Zech K, Oehmichen K, Grasemann E, Michaelis J, Funke S, Seiffert M (2015) Technical, economic and environmental assessment of technologies for the production of biohydrogen and its distribution: results of the Hy-NOW study. Int J Hydrogen Energy 40(15):5487–5495. https://doi.org/10.1016/j.ijhydene.2015.01.177

    Article  Google Scholar 

  128. Sinha P, Pandey A (2011) An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrogen Energy 36:7460–7478. https://doi.org/10.1016/j.ijhydene.2011.03.077

    Article  Google Scholar 

  129. Kim SH, Mudhoo A, Pugazhendhi A, Saratale RG, Surroop D, Jeetah P, Park JH, Saratale GD, Kumar G (2019) A perspective on galactose-based fermentative hydrogen production from macroalgal biomass: trends and opportunities. Bioresour Technolo. 280:447–458. https://doi.org/10.1016/j.biortech.2019.02.050

    Article  Google Scholar 

  130. Pathak VV, Ahmad S, Pandey A, Tyagi VV, Buddhi D, Kothari R (2016) Deployment of fermentative biohydrogen production for sustainable economy in Indian scenario: practical and policy barriers with recent progresses. Curr Sustainable Renewable Energy Rep. 3(3-4):101–107. https://doi.org/10.1007/s40518-016-0052-2

    Article  Google Scholar 

  131. Dabrock B, Bahl H, Gottschalk G (1992) Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 58:1233–1239. https://doi.org/10.1128/aem.58.4.1233-1239.1992

  132. Hong Y, Wu YR (2020) Acidolysis as a biorefinery approach to producing advanced bioenergy from macroalgal biomass: a state-of-the-art review. Bioresour Technol 318: 124080. https://doi.org/10.1016/j.biortech.2020.124080

Download references

Acknowledgments

This work is supported by the Department of Biotechnology, India, under its initiative Mission Innovation Challenge Scheme (IC4). The grant from the project entitled “A novel integrated biorefinery for conversion of lignocellulosic agro waste into value added products and bioenergy” (BT/PR31054/PBD/26/763/2019) is utilized for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rajesh Banu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.D., Kavitha, S., Tyagi, V.K. et al. Macroalgae-derived biohydrogen production: biorefinery and circular bioeconomy. Biomass Conv. Bioref. 12, 769–791 (2022). https://doi.org/10.1007/s13399-020-01187-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01187-x

Keywords

Navigation