Skip to main content
Log in

Copper and manganese bimetallic catalysts for oxidation of prot lignin: effects of metal oxide on product yield

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignin is a macro polymer with aromatic structure and is a highly promising renewable carbon source for valuable chemicals and energy. It is available in huge quantities as a by-product from the paper & pulp industry and 2G ethanol industry. Valorization of lignin into useful chemicals can play a vital role in overcoming the demand of diverse chemicals being produced from petroleum feedstock. In the present study, we have examined the oxidative conversion of prot lignin in the presence of Cu/γ-Al2O3, Mn/γ-Al2O3, and Cu-Mn/γ-Al2O3 in water and ethanol-water co-solvent mixture. In water, maximum bio-oil yield of 24.0 wt.% was noticed with Cu/γ-Al2O3. In the case of ethanol-water (50/50) (wt/wt) co-solvent mixture, the maximum bio-oil yield of 74.3 wt.% was obtained with Cu/γ-Al2O3, catalyst. The bio-oil was analysed by GC-MS, 1H-NMR, and FT-IR analyses. The GC-MS compounds were grouped as phenolic (G-, H-, and S-type), heterocyclic, acidic, and other type compounds. Among all the catalysts, Cu/γ-Al2O3 showed the maximum amount of phenolics (84.2%) using 25/75 (wt/wt) ethanol-water solvent. In the case of water as reaction medium, the non-catalytic and catalytic oxidation of lignin showed the maximum selectivity towards acetosyringone with area percentage as 42.0% and 34.4% respectively. In addition, the formation of vanillin (20.7%) was observed in the presence of Cu/γ-Al2O3 using water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fan L, Zhang Y, Liu S, Zhou N, Chen P, Cheng Y, Addy M, Lu Q, Omar MM, Liu Y, Wang Y, Dai L, Anderson E, Peng P, Lei H, Ruan R (2017) Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters. Bioresour Technol 241:1118–1126. https://doi.org/10.1016/j.biortech.2017.05.129

    Article  Google Scholar 

  2. Zhao Y, Xu Q, Pan T, Zuo Y, Fu Y, Guo QX (2013) Depolymerization of lignin by catalytic oxidation with aqueous polyoxometalates. Appl Catal A Gen 467:504–508. https://doi.org/10.1016/j.apcata.2013.07.044

    Article  Google Scholar 

  3. Brown TR, Brown RC (2013) A review of cellulosic biofuel commercial-scale projects in the United States. Biofuels Bioprod. Biorefin 7:235–245. https://doi.org/10.1002/bbb.1387

    Article  Google Scholar 

  4. Araujo LCP, Yamaji FM, Lima VH, Botaro VR (2020) Kraft lignin fractionation by organic solvents: correlation between molar mass and higher heating value. Bioresour Technol 314:123757. https://doi.org/10.1016/j.biortech.2020.123757

    Article  Google Scholar 

  5. Kumar A, Biswas B, Saini K, Kumar A, Kumar J, Krishna BB, Bhaskar T (2020) Effect of hydrogen peroxide on the depolymerization of prot lignin. Ind Crop Prod 15:112355. https://doi.org/10.1016/j.indcrop.2020.112355

    Article  Google Scholar 

  6. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624. https://doi.org/10.1021/acs.chemrev.5b00155

    Article  Google Scholar 

  7. Zhu G, Qiu X, Zhao Y, Qian Y, Pang Y, Ouyan X (2016) Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols. Bioresour Technol 218:718–722. https://doi.org/10.1016/j.biortech.2016.07.021

    Article  Google Scholar 

  8. Sudarsanam P, Duolikun T, Babu PS, Rokhum L, Johan MR (2019) Recent developments in selective catalytic conversion of lignin into aromatics and their derivatives. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-019-00530-1

  9. Hdidou L, Khallouk K, Solhy A, Manoun B, Oukarroum A, Barakat A (2018) Synthesis of CoFeO mixed oxides via an alginate gelation process as efficient heterogeneous catalysts for lignin depolymerization in water. Catal Sci Technol 8(21):5445–5453. https://doi.org/10.1039/C8CY00576A

    Article  Google Scholar 

  10. Lin JY, Lin KYA (2019) Catalytic conversion of a lignin model compound to value-added products using Cu/TEMPO-catalyzed aerobic oxidation. Biomass conversion and biorefinery 9:617–623. https://doi.org/10.1007/s13399-019-00384-7

    Article  Google Scholar 

  11. Tarasov AL, Kustov LM, Bogolyubov AA, Kiselyov AS, Semenov VV (2009) New and efficient procedure for the oxidation of dioxybenzylic alcohols into aldehydes with Pt and Pd-based catalysts under flow reactor conditions. Appl Catal A Gen 366:227–231. https://doi.org/10.1016/j.apcata.2009.06.025

    Article  Google Scholar 

  12. Jeon W, Choi IH, Park JY, Lee JS, Hwang KR (2019) Alkaline wet oxidation of lignin over Cu-Mn mixed oxide catalysts for production of vanillin. Catal Today 352:95–103. https://doi.org/10.1016/j.cattod.2019.12.037

    Article  Google Scholar 

  13. Cheng C, Wang J, Shen D, Xue J, Guan S, Gu S, Luo KH (2017) Catalytic oxidation of lignin in solvent systems for production of renewable chemicals: a review. Polymers 9:240. https://doi.org/10.3390/polym9060240

    Article  Google Scholar 

  14. Kong L, Zhang L, Gu J, Gou L, Xie L, Wang Y, Dai L (2020) Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel rhenium supported on niobium oxide catalyst. Bioresour Technol 299:122582. https://doi.org/10.1016/j.biortech.2019.122582

    Article  Google Scholar 

  15. Botaro VR, Curvelo AAS (2009) Monodisperse lignin fractions as standards in size exclusion analysis. J Chromatogr A 1216(18):3802–3806. https://doi.org/10.1016/j.chroma.2009.02.039

    Article  Google Scholar 

  16. Irmak S, Kang J, Wilkins M (2020) Depolymerization of lignin by wet air oxidation. Bioresource technology reports 9:100377. https://doi.org/10.1016/j.biteb.2019.100377

    Article  Google Scholar 

  17. Almada CC, Kazachenko A, Fongarland P, Perez DDS, Kuznetsov BN, Djakovitch L (2020) Oxidative depolymerization of lignins for producing aromatics: variation of botanical origin and extraction methods. Biomass conversion and biorefinery. https://doi.org/10.1007/s13399-020-00897-6

  18. Domınguez JC, Oliet M, Alonso MV, Gilarranz MA, Rodrıguez F (2008) Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globules. Ind. Crops Prod 27: 150–157. https://doi.org/10.1016/j.indcrop.2007.07.006

  19. Biswas B, Singh R, Kumar J, Khan AA, Krishna BB, Bhaskar T (2016) Slow pyrolysis of prot, alkali, and dealkaline lignins for production of chemicals. Bioresour Technol 213:319–326. https://doi.org/10.1016/j.biortech.2016.01.131

    Article  Google Scholar 

  20. Kumar A, Biswas B, Bhaskar T (2020) Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin. Bioresour Technol 299:122589. https://doi.org/10.1016/j.biortech.2019.122589

    Article  Google Scholar 

  21. Singh O, Sharma T, Ghosh I, Dasgupta D, Vempatapu BP, Hazara S, Kustov AL, Sarkar B, Ghosh D (2019) Converting lignocellulosic pentosan-derived yeast single cell oil into aromatics: biomass to Bio-BTX. ACS Sustain Chem Eng 7:13437–13445. https://doi.org/10.1021/acssuschemeng.9b02851

  22. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids. Pure & Appl Chem 66(8):1739–1758. https://doi.org/10.1351/pac199466081739

    Article  Google Scholar 

  23. Doggali P, Teraoka Y, Mungse P, Shah IK, Rayalu S, Labhsetwar N (2012) Combustion of volatile organic compounds over Cu–Mn based mixed oxide type catalysts supported on mesoporous Al2O3, TiO2 and ZrO2. J Mol Catal A Chem 358:23–30. https://doi.org/10.1016/j.molcata.2012.02.004

    Article  Google Scholar 

  24. Heny D, Rochmadi, Suryo P, Arief B (2016) Effect of modification ZSM-5 catalyst in upgrading quality of organic liquid product derived from catalytic cracking of Indonesian nyamplung oil (Calophyllum inophyllum). Advances of Science and Technology for Society; https://doi.org/10.1063/1.4958485

  25. Dicosimo R, Szabo HC (1988) Oxidation of lignin model compounds using single-electron-transfer catalysts. J. Org. Chem 53:1673–1679. https://doi.org/10.1021/jo00243a014

    Article  Google Scholar 

  26. Partenheimer W (2009) The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv Synth Catal 351:456–466. https://doi.org/10.1002/adsc.200800614

    Article  Google Scholar 

  27. Kurek B, Gaudard F (2000) Oxidation of spruce wood sawdust by MnO2 plus oxalate: a biochemical investigation. J Agric Food Chem 48(7):3058–3062. https://doi.org/10.1021/jf000015g

    Article  Google Scholar 

  28. Pinson VM, Ruel K, Gaudard F, Valtat G, Conil MP, Kurek B (2004) Oxalic acid: a microbial metabolite of interest for the pulping industry L’acide oxalique : un métabolite microbien d;intérêt pour l’industrie papetière. C R Biol 327:917–925. https://doi.org/10.1016/j.crvi.2004.07.007

    Article  Google Scholar 

  29. Ye Y, Zhang Y, Fan J, Chang J (2012) Novel method for production of phenolics by combining lignin extraction with lignin depolymerization in aqueous ethanol. Ind. Eng. Chem. Res 51:103–110. https://doi.org/10.1021/ie202118d

    Article  Google Scholar 

  30. Singh R, Prakash A, Dhiman SK, Balagurumurthy B, Arora AK, Puri SK, Bhaskar T (2014) Hydrothermal conversion of lignin to substituted phenols and aromatic ethers. Bioresour Technol 165:319–322. https://doi.org/10.1016/j.biortech.2014.02.076

    Article  Google Scholar 

  31. Lu X, Zhu X, Guo H, Que H, Wang D, Liang D, He T, Hu C, Xu C, Gu X (2020) Efficient depolymerization of alkaline lignin to phenolic compounds at low temperatures with formic acid over inexpensive Fe–Zn/Al2O3 catalyst. Energy Fuel 34(6):7121–7130. https://doi.org/10.1021/acs.energyfuels.0c00742

    Article  Google Scholar 

  32. Zhao Y, Xu Q, Pan T, Zuo Y, Fu Y, Guo QX (2013) Depolymerization of lignin by catalytic oxidation with aqueous polyoxometalates. Appl Catal A Gen 467:504–508. https://doi.org/10.1016/j.apcata.2013.07.044

    Article  Google Scholar 

  33. Voitl T, Von Rohr PR (2008) Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. ChemSusChem 1:763–769. https://doi.org/10.1002/cssc.200800050

    Article  Google Scholar 

  34. Guvenatam B, Heeres EHJ, Pidko EA, Hensen EJM (2015) Lewis acid-catalyzed depolymerization of soda lignin in supercritical ethanol/water mixtures. Catal Today 269:9–20. https://doi.org/10.1016/j.cattod.2015.08.039

    Article  Google Scholar 

  35. Xiang Q, Lee YY (2001) Production of oxychemicals from precipitated hardwood lignin. Appl Biochem Biotechnol 91–93:71–80. https://doi.org/10.1007/978-1-4612-0217-2_6

    Article  Google Scholar 

  36. Santos GS, Marques AP, Lima DLD, Evtuguin DV, Esteves VI (2011) Kinetics of eucalypt lignosulfonate oxidation to aromatic aldehydes by oxygen in alkaline medium. Ind Eng Chem Res 50:291–298. https://doi.org/10.1021/ie101402t

    Article  Google Scholar 

  37. Wu G, Heitz M, Chornet E (1994) Improved alkaline oxidation process for the production of aldehydes (vanillin and syringaldehyde) from steam-explosion hardwood lignin. Ind Eng Chem Res 33:718–723. https://doi.org/10.1021/ie00027a034

    Article  Google Scholar 

  38. Fragaso DMDA, B Ouxin FP, Montgomery JRD, Westwood NJ, Jackson SD (2020) Catalytic depolymerisation of isolated lignin to fne chemicals: depolymerisation of kraft lignin. Bioresource Technology Reports 9:100400. https://doi.org/10.1016/j.biteb.2020.100400

  39. Ni Y, Hu Q (1995) AlcellÒ lignin solubility in ethanol-water mixtures. J Appl Polym Sci 57:1441–1446. https://doi.org/10.1002/app.1995.070571203

    Article  Google Scholar 

  40. Ma R, Guo M, Zhang X (2018) Recent advances in oxidative valorization of lignin. Catal Today 302:50–60. https://doi.org/10.1016/j.cattod.2017.05.101

    Article  Google Scholar 

  41. Dicosimo R, Szabo HC (1988) Oxidation of lignin model compounds using single-electron-transfer catalysts. J Org Chem 53:1673–1679. https://doi.org/10.1021/jo00243a014

    Article  Google Scholar 

  42. Huang X, Korányi TI, Boot MD, Hensen EJM (2015) Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics. Green Chem 17:4941–4950. https://doi.org/10.1039/C5GC01120E

    Article  Google Scholar 

  43. Limarta SO, Ha JM, Park YK, Lee H, Suh DJ, Jae J (2018) Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. J Ind Eng Chem 57:45–54. https://doi.org/10.1016/j.jiec.2017.08.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-Indian Institute of Petroleum, Dehradun, for his constant encouragement and support, and AcSIR for granting permission to conduct this research work at CSIR-IIP. Avnish Kumar thanks CSIR, New Delhi, India, for his Senior Research Fellowship (SRF). The authors thank the Analytical Science Division (ASD) of CSIR-IIP (FT-IR, 1H-NMR, and XRD) for providing analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thallada Bhaskar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Biswas, B., Saini, K. et al. Copper and manganese bimetallic catalysts for oxidation of prot lignin: effects of metal oxide on product yield. Biomass Conv. Bioref. 12, 115–128 (2022). https://doi.org/10.1007/s13399-020-01167-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01167-1

Keywords

Navigation