Skip to main content

Advertisement

Log in

Artificial Intelligence as a Combinatorial Optimization Strategy for Cellulase Production by Trichoderma stromaticum AM7 Using Peach-Palm Waste Under Solid-State Fermentation

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The use of agro-industrial waste as substrate to produce enzymes has been widely studied in order to adjust the high productions of these biocatalysts with a reduction of the final cost in an ecologically correct process in the industry. This is the first work to use peach-palm (Bactris gasipaes Kunth.) waste for the production of carboxymethylcellulases (CMCase) by the Trichoderma stromaticum AM7 under solid-state fermentation (SSF) using the artificial neural network and genetic algorithm (ANN-GA) to optimize the cellulase production. ANN-AG was used to determine the optimal influence of nitrogen source concentration (2.46%), time (12 days), and temperature (26 °C) on the cellulase production with 98% of efficiency for algorithm prediction of endoglucanase activity. The predicted and experimental values of the CMCase activity in U/g of dry initial substrate (gds) were 122.9 and 120.0, respectively. After all optimization processes, the variation of these parameters allowed a final increase of 31.58-fold when compared to the initial fermentation. Moreover, the treatment of peach-palm waste with T. stromaticum AM7 endoglucanase had an effect on the degradation of the fibers analyzed by scanning electron microscopy and the saccharification of the waste by releasing reducing sugar (807.80 mg/g) for 8 h of incubation. These results are very promising to waste valorization and the biotechnological and industrial applications of cellulase of the T. stromaticum AM7 to food processes and biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017) Microbial cellulases – diversity & biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol 15:197–210. https://doi.org/10.1016/j.jgeb.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  2. Yang S, Yang B, Duan C, Fuller DA, Wang X, Chowdhury SP, Stavik J, Zhang H, Ni Y (2019) Applications of enzymatic technologies to the production of high-quality dissolving pulp: a review. Bioresour Technol 281:440–448. https://doi.org/10.1016/j.biortech.2019.02.132

    Article  CAS  PubMed  Google Scholar 

  3. Ellilä S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:1–17. https://doi.org/10.1186/s13068-017-0717-0

    Article  CAS  Google Scholar 

  4. Zhang J, Fang Z, Deng H, Zhang X, Bao J (2013) Cost analysis of cassava cellulose utilization scenarios for ethanol production on flowsheet simulation platform. Bioresour Technol 134:298–306. https://doi.org/10.1016/j.biortech.2013.02.041

    Article  CAS  PubMed  Google Scholar 

  5. Delabona P d S, RDPB P, Codima CA et al (2012) Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass Bioenergy 37:243–250. https://doi.org/10.1016/j.biombioe.2011.12.006

    Article  CAS  Google Scholar 

  6. Marques NP, de Cassia PJ, Gomes E et al (2018) Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crop Prod 122:66–75. https://doi.org/10.1016/j.indcrop.2018.05.022

    Article  CAS  Google Scholar 

  7. Saini A, Aggarwal NK, Yadav A (2017) Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate. 3. Biotech 7:1–11. https://doi.org/10.1007/s13205-017-0604-1

    Article  Google Scholar 

  8. Passos D d F, Pereira N, de Castro AM (2018) A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr Opin Green Sustain Chem 14:60–66. https://doi.org/10.1016/j.cogsc.2018.06.003

    Article  Google Scholar 

  9. Santos DA, Oliveira MM, Curvelo AAS, Fonseca LP, Porto ALM (2017) Hydrolysis of cellulose from sugarcane bagasse by cellulases from marine-derived fungi strains. Int Biodeterior Biodegrad 121:66–78. https://doi.org/10.1016/j.ibiod.2017.03.014

    Article  CAS  Google Scholar 

  10. Lee H, Lee YM, Heo YM, Lee J, Kim JS, Kang KY, Kim JJ (2017) Utilization of agricultural residues for enhancement of cellulolytic enzyme production and enzymatic saccharification by Trichoderma harzianum KUC1716. Ind Crop Prod 109:185–191. https://doi.org/10.1016/j.indcrop.2017.08.042

    Article  CAS  Google Scholar 

  11. Yong Syuan K, Ong Gaik Ai L, Kim Suan T (2018) Evaluation of cellulase and xylanase production from Trichoderma harzianum using acid-treated rice straw as solid substrate. Mater Today Proc 5:22109–22117. https://doi.org/10.1016/j.matpr.2018.07.077

    Article  CAS  Google Scholar 

  12. Taherzadeh-Ghahfarokhi M, Panahi R, Mokhtarani B (2019) Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residues. Renew Energy 131:946–955. https://doi.org/10.1016/j.renene.2018.07.130

    Article  CAS  Google Scholar 

  13. Ezeilo UR, Lee CT, Huyop F, Zakaria II, Wahab RA (2019) Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. J Environ Manag 243:206–217. https://doi.org/10.1016/j.jenvman.2019.04.113

    Article  CAS  Google Scholar 

  14. Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol 86:656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090

    Article  CAS  PubMed  Google Scholar 

  15. Clement CR, de Cristo-Araújo M, Coppens d’Eeckenbrugge G et al (2017) Origin and dispersal of domesticated peach palm. Front Ecol Evol 5:1–19. https://doi.org/10.3389/fevo.2017.00148

    Article  Google Scholar 

  16. Giombelli C, Iwassa IJ, da Silva C, Bolanho Barros BC (2020) Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds. J Supercrit Fluids 165:104985. https://doi.org/10.1016/j.supflu.2020.104985

    Article  CAS  Google Scholar 

  17. Franco TS, Potulski DC, Viana LC, Forville E, de Andrade AS, de Muniz GIB (2019) Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydr Polym 218:8–19. https://doi.org/10.1016/j.carbpol.2019.04.035

    Article  CAS  PubMed  Google Scholar 

  18. Ezeilo UR, Wahab RA, Mahat NA (2020) Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew Energy 156:1301–1312. https://doi.org/10.1016/j.renene.2019.11.149

    Article  CAS  Google Scholar 

  19. Prasanna HN, Ramanjaneyulu G, Rajasekhar Reddy B (2016) Optimization of cellulase production by Penicillium sp. 3. Biotech 6:1–11. https://doi.org/10.1007/s13205-016-0483-x

    Article  Google Scholar 

  20. Amadi OC, Egong EJ, Nwagu TN, Okpala G, Onwosi CO, Chukwu GC, Okolo BN, Agu RC, Moneke AN (2020) Process optimization for simultaneous production of cellulase, xylanase and ligninase by Saccharomyces cerevisiae SCPW 17 under solid state fermentation using Box-Behnken experimental design. Heliyon 6:e04566. https://doi.org/10.1016/j.heliyon.2020.e04566

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chang C, Xu G, Yang J, Wang D (2011) Optimization of cellulase production using agricultural wastes by artificial neural network and genetic algorithm. Chem Prod Process Model 6. https://doi.org/10.2202/1934-2659.1553

  22. Salim N, Santhiagu A, Joji K (2019) Process modeling and optimization of high yielding L-methioninase from a newly isolated Trichoderma harzianum using response surface methodology and artificial neural network coupled genetic algorithm. Biocatal Agric Biotechnol 17:299–308. https://doi.org/10.1016/j.bcab.2018.11.032

    Article  Google Scholar 

  23. Baskar G, Renganathan S (2020) Optimization of L-asparaginase production by Aspergillus terreus MTCC 1782 using response surface methodology and artificial neural network-linked genetic algorithm. Asia-Pacifc J Chem Eng 7:1–22

    Google Scholar 

  24. Fernández Núñez EG, Barchi AC, Ito S, Escaramboni B, Herculano RD, Mayer CRM, de Oliva Neto P (2017) Artificial intelligence approach for high level production of amylase using Rhizopus microsporus var. oligosporus and different agro-industrial wastes. J Chem Technol Biotechnol 92:684–692. https://doi.org/10.1002/jctb.5054

    Article  CAS  Google Scholar 

  25. Haykin S (2008) Neural networks and learning machines, 3rd edn. Pearson, Ontario

    Google Scholar 

  26. Coley DA (1999) An introduction to genetic algorithms for scientists and engineers, 1st edn. World Scientific Pub, Singapore

    Book  Google Scholar 

  27. Simon D (2013) Evolutionary optimization algorithms: biologically-inspired and population-based approaches to computer intelligence, 1st edn. John Wiley & Sons, New Jersey

    Google Scholar 

  28. Carvalho EA, dos Santos Góes LM, Uetanabaro APT, da Silva EGP, Rodrigues LB, Pirovani CP, da Costa AM (2017) Thermoresistant xylanases from Trichoderma stromaticum: application in bread making and manufacturing xylo-oligosaccharides. Food Chem 221:1499–1506. https://doi.org/10.1016/j.foodchem.2016.10.144

    Article  CAS  PubMed  Google Scholar 

  29. De Souza JT, Pomella AWV, Bowers JH et al (2006) Genetic and biological diversity of Trichoderma stromaticum, a mycoparasite of the cacao witches -broom pathogen. Phytopathology 96:61–67

    Article  Google Scholar 

  30. Carvalho EA, Nunes LV, Goes LM d S et al (2018) Peach-palm (Bactris gasipaes Kunth.) waste as substrate for xylanase production by Trichoderma stromaticum AM7. Chem Eng Commun 205:975–985. https://doi.org/10.1080/00986445.2018.1425208

    Article  CAS  Google Scholar 

  31. Han X, Song W, Liu G, Li Z, Yang P, Qu Y (2017) Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. Bioresour Technol 227:155–163. https://doi.org/10.1016/j.biortech.2016.11.079

    Article  CAS  PubMed  Google Scholar 

  32. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding 72:248–254

  34. Nunes NS, Carneiro LL, Menezes LHS, Carvalho MS, Pimentel AB, Silva TP, Pacheco CS, Tavares IMC, Santos PH, Chagas TP, da Silva EG, Oliveira JR, Bilal M, Franco M (2020) Simplex-centroid design and artificial neural network-genetic algorithm for the optimization of exoglucanase production by Penicillium roqueforti ATCC 10110 through solid-state fermentation using a blend of agroindustrial wastes. BioEnergy Res 13:1130–1143. https://doi.org/10.1007/s12155-020-10157-0

    Article  CAS  Google Scholar 

  35. Silva TP, de Albuquerque FS, dos Santos CWV, Franco M, Caetano LC, Pereira HJV (2018) Production, purification, characterization and application of a new halotolerant and thermostable endoglucanase of Botrytis ricini URM 5627. Bioresour Technol 270:263–269. https://doi.org/10.1016/j.biortech.2018.09.022

    Article  CAS  PubMed  Google Scholar 

  36. Ebrahimi M, Caparanga AR, Ordono EE, Villaflores OB (2017) Evaluation of organosolv pretreatment on the enzymatic digestibility of coconut coir fibers and bioethanol production via simultaneous saccharification and fermentation. Renew Energy 109:41–48. https://doi.org/10.1016/j.renene.2017.03.011

    Article  CAS  Google Scholar 

  37. Oliveira PC, de Brito AR, Pimentel AB et al (2019) Cocoa shell for the production of endoglucanase by Penicillium roqueforti ATCC 10110 in solid state fermentation and biochemical properties. Rev Mex Ing Quim 18:777–787. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Oliveira

    Article  CAS  Google Scholar 

  38. Salomão GSB, Agnezi JC, Paulino LB, Hencker LB, de Lira TS, Tardioli PW, Pinotti LM (2019) Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi. Biocatal Agric Biotechnol 17:1–6. https://doi.org/10.1016/j.bcab.2018.10.019

    Article  Google Scholar 

  39. Marques GL, Silva T, Lessa OA, de Brito AR, Reis NS, Fernandes AGA, Ferreira MLO, Oliveira JRFM (2019) Production of xylanase and endoglucanase by solid state fermentation of jackfruit residue. Rev Mex Ingeniería Química 18:673–680

    Article  CAS  Google Scholar 

  40. Ang SK, Shaza EM, Adibah Y et al (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem 48:1293–1302. https://doi.org/10.1016/j.procbio.2013.06.019

    Article  CAS  Google Scholar 

  41. Wang H, Zhai L, Geng A (2020) Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. J Biosci Bioeng 129:242–249. https://doi.org/10.1016/j.jbiosc.2019.08.016

    Article  CAS  PubMed  Google Scholar 

  42. Siqueira JGW, Rodrigues C, Vandenberghe LP d S et al (2020) Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy 132:105419. https://doi.org/10.1016/j.biombioe.2019.105419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Agroceres/Inaceres company (Uruçuca city, Bahia, Brazil) for supplying the peach-palm waste and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for assistance.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado da Bahia - FAPESB (grant number: 4624/2014 - PAM0002/2014) and Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (grant number: 446462/2014-4 - MCTI/CNPq/Universal 14/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa Miura da Costa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Authors’ Contributions

Camila Oliveira Bezerra: developed the concept and methodology, data acquisition. Lucas Lima Carneiro: formal analysis and Validation. Elck Alemeida Carvalho: analysed the data and wrote the original draft. Thiago Pereira das Chagas: formal analysis and software, reviewed and edited final manuscript. Lucas Ribeiro de Carvalho: investigation and writing the original draft. Ana Paula Trovatti Uetanabaro: funding acquisition, reviewing and editing the manuscript. Gervásio Paulo da Silva: reviewing and editing the manuscript. Erik Galvão Paranhos da Silva: formal analysis and reviewing and editing the manuscript. Andréa Miura da Costa: conceptualization, resources, funding acquisition, acquisition of material used in the study, project initiation, reviewing and editing the manuscript, and supervision.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, C.O., Carneiro, L.L., Carvalho, E.A. et al. Artificial Intelligence as a Combinatorial Optimization Strategy for Cellulase Production by Trichoderma stromaticum AM7 Using Peach-Palm Waste Under Solid-State Fermentation. Bioenerg. Res. 14, 1161–1170 (2021). https://doi.org/10.1007/s12155-020-10234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10234-4

Keywords

Navigation