Skip to main content

Advertisement

Log in

Applications of adaptive stiffness suspensions to vibration control of a high-speed stiff rotor with tilting pad bearings

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

This article has been updated

Abstract

The current paper discusses the optimum parameter setting of asymmetric high-static low-dynamic stiffness (HSLDS) suspensions to reduce vibrations of a high-speed symmetric rotary system, excited by an unbalance force. The rotating system consists of a shaft that is supported by tilting pad journal bearings on the asymmetric HSLDS suspensions. The Reynolds equation is solved numerically to obtain the oil pressure distribution for each pad of bearing. With the aim of calculating the hydrodynamic forces applied to each pad, an analytical approach is presented. Its results are validated using a numerical integration approach. Given the considerable difference between the shaft mass and pads moment of inertia, the mathematical equations governing the motions of disk, journal, bearing and pads are solved implementing a routine specified for stiff ordinary differential equations in MATLAB. The optimum parameters of HSLDS suspensions are obtained, using a multi-objective genetic algorithm. Design objectives are considered to minimize the vibrations of rotor, journal, and bearing and bearing force transmission to the external supports. The efficiency of optimum HSLDS suspensions in reducing the vibrations of journal, bearing and rotor within the operating speed range is shown. The high performance of the designed suspensions in decreasing the bearings force transmission is proved as well. In addition, the design robustness to uncertainties in HSLDS suspensions parameters is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 13 January 2021

    Journal abbreviated title on top of the page has been corrected to “Arch Appl Mech”

References

  1. Jafari, S.M., Rohani, R., Rahi, A.: Experimental and numerical study of an angular contact ball bearing vibration response with spall defect on the outer race. Arch. Appl. Mech. 90, 2487–2511 (2020)

    Article  Google Scholar 

  2. Dąbrowski, R.: Stability of a freestanding column loaded through a roller bearing. Ingenieur-Archiv 54(1), 16–24 (1984)

    Article  Google Scholar 

  3. Lehn, A., Schweizer, B.: Generalized Reynolds equation for fluid film problems with arbitrary boundary conditions: application to double-sided spiral groove thrust bearings. Arch. Appl. Mech. 86(4), 743–760 (2016)

    Article  Google Scholar 

  4. Neale, M.J.: Bearings: a tribology handbook. Elsevier, Amsterdam (2013)

    Google Scholar 

  5. Guyer, R.A., Jr.: Rolling bearings handbook and troubleshooting guide. CRC Press, Boca Raton (1996)

    Google Scholar 

  6. Someya, T., Mitsui, J., Esaki, J., Saito, S., Kanemitsu, Y., Iwatsubo, T., Tanaka, M., Hisa, S., Fujikawa, T., Kanki, H.: Journal-bearing databook. Springer, Berlin (2013)

    Google Scholar 

  7. Dimond, T., Younan, A., Allaire, P.: A review of tilting pad bearing theory. Int. J. Rotating Mach. 2011, 1–23 (2011)

    Article  Google Scholar 

  8. Shi, C., Parker, R.G., Shaw, S.W.: Tuning of centrifugal pendulum vibration absorbers for translational and rotational vibration reduction. Mech. Mach. Theory 66, 56–65 (2013)

    Article  Google Scholar 

  9. Doubrawa Filho, F., Luersen, M., Bavastri, C.: Optimal design of viscoelastic vibration absorbers for rotating systems. J. Vib. Control 17(5), 699–710 (2011)

    Article  MathSciNet  Google Scholar 

  10. Ishida, Y.: New passive control methods for reducing vibrations of rotors: Discontinuous spring characteristics and ball balancers. In: IUTAM Symposium on Emerging Trends in Rotor Dynamics, pp. 387–403. Springer, Berlin (2011)

    Chapter  Google Scholar 

  11. Walsh, P.L., Lamancusa, J.: A variable stiffness vibration absorber for minimization of transient vibrations. J. Sound Vib. 158(2), 195–211 (1992)

    Article  Google Scholar 

  12. Bab, S., Khadem, S., Shahgholi, M., Abbasi, A.: Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mechanical Systems and Signal Processing 84, 128–157 (2017)

    Article  Google Scholar 

  13. Abbasi, A., Khadem, S., Bab, S.: Vibration control of a continuous rotating shaft employing high-static low-dynamic stiffness isolators. J. Vib. Control 24(4), 760–783 (2018)

    Article  MathSciNet  Google Scholar 

  14. Bab, S., Najafi, M., Sola, J.F., Abbasi, A.: Annihilation of non-stationary vibration of a gas turbine rotor system under rub-impact effect using a nonlinear absorber. Mech. Mach. Theory 139, 379–406 (2019)

    Article  Google Scholar 

  15. Alabuzhev, P., Rivin, E.I.: Vibration protection and measuring systems with quasi-zero stiffness. CRC Press, Boca Raton (1989)

    Google Scholar 

  16. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007). https://doi.org/10.1016/j.jsv.2006.10.011

    Article  Google Scholar 

  17. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009). https://doi.org/10.1016/j.jsv.2008.11.034

    Article  Google Scholar 

  18. Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012). https://doi.org/10.1007/s11071-011-0180-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Friswell, M.I., Saavedra Flores, E.I.: Dynamic isolation systems using tunable nonlinear stiffness beams. The European Physical Journal Special Topics 222(7), 1563–1573 (2013). https://doi.org/10.1140/epjst/e2013-01945-5

    Article  Google Scholar 

  20. Sun, J., Huang, X., Liu, X., Xiao, F., Hua, H.: Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. 74(4), 1103–1112 (2013). https://doi.org/10.1007/s11071-013-1027-0

    Article  Google Scholar 

  21. Shaw, A.D., Neild, S.A., Wagg, D.J.: Dynamic analysis of high static low dynamic stiffness vibration isolation mounts. J. Sound Vib. 332(6), 1437–1455 (2013). https://doi.org/10.1016/j.jsv.2012.10.036

    Article  Google Scholar 

  22. Lu, Z., Yang, T., Brennan, M.J., Li, X., Liu, Z.: An investigation into the isolation performance of mono-and bi-stable systems. J. Mar. Sci. Appl. 13(3), 291–298 (2014). https://doi.org/10.1007/s11804-014-1259-5

    Article  Google Scholar 

  23. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: A theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014). https://doi.org/10.1016/j.jsv.2013.10.026

    Article  Google Scholar 

  24. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dyn. 76(2), 1157–1167 (2014). https://doi.org/10.1007/s11071-013-1199-7

    Article  MathSciNet  Google Scholar 

  25. Shaw, A.D., Neild, S.A., Friswell, M.I.: Relieving the effect of static load errors in nonlinear vibration isolation mounts through stiffness asymmetries. J. Sound Vib. 339, 84–98 (2015). https://doi.org/10.1016/j.jsv.2014.11.006

    Article  Google Scholar 

  26. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 346, 53–69 (2015). https://doi.org/10.1016/j.jsv.2015.02.005

    Article  Google Scholar 

  27. Zhou, J., Xu, D., Bishop, S.: A torsion quasi-zero stiffness vibration isolator. J. Sound Vib. 338, 121–133 (2015). https://doi.org/10.1016/j.jsv.2014.10.027

    Article  Google Scholar 

  28. Wang, X., Zhou, J., Xu, D., Ouyang, H., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn. 87, 633–646 (2016). https://doi.org/10.1007/s11071-016-3065-x

    Article  Google Scholar 

  29. Tang, B., Brennan, M.J.: On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 81, 207–214 (2014). https://doi.org/10.1016/j.ijmecsci.2014.02.019

    Article  Google Scholar 

  30. Liu, Y., Xu, L., Song, C., Gu, H., Ji, W.: Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Arch. Appl. Mech. 89(9), 1743–1759 (2019)

    Article  Google Scholar 

  31. Fang, H., Li, D., Duan, L., Shao, F., Liu, Y.: Passive vibration suppression in a coupled linear–bistable continuous module excited near resonance. Arch. Appl. Mech. 90, 2449–2464 (2020)

    Article  Google Scholar 

  32. Abu-Mahfouz, I., Adams, M.L.: Numerical Study of Some Nonlinear Dynamics of a Rotor Supported on a Three-Pad Tilting Pad Journal Bearing (TPJB). J. Vib. Acoust. 127(3), 262–272 (2005). https://doi.org/10.1115/1.1888593

    Article  Google Scholar 

  33. Okabe, E.P., Cavalca, K.L.: Rotordynamic analysis of systems with a non-linear model of tilting pad bearings including turbulence effects. Nonlinear Dyn. 57(4), 481–495 (2009). https://doi.org/10.1007/s11071-008-9378-7

    Article  MATH  Google Scholar 

  34. Lu, Y., Zhang, Y., Shi, X., Wang, W., Yu, L.: Nonlinear dynamic analysis of a rotor system with fixed-tilting-pad self-acting gas-lubricated bearings support. Nonlinear Dyn. 69(3), 877–890 (2012). https://doi.org/10.1007/s11071-011-0310-1

    Article  MathSciNet  Google Scholar 

  35. Guijosa, J., Feng, Z.: Stability analysis of a rigid rotor on tilting-pad journal bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 214(3), 243–251 (2000)

    Article  Google Scholar 

  36. Brancati, R., Rocca, E., Russo, R.: Non-linear stability analysis of a rigid rotor on tilting pad journal bearings. Tribol. Int. 29(7), 571–578 (1996)

    Article  Google Scholar 

  37. Cloud, C.H., Maslen, E.H., Barrett, L.E.: Rotor stability estimation with competing tilting pad bearing models. Mechanical Systems and Signal Processing 29, 90–106 (2012). https://doi.org/10.1016/j.ymssp.2011.12.003

    Article  Google Scholar 

  38. Cha, M., Isaksson, P., Glavatskih, S.: Influence of pad compliance on nonlinear dynamic characteristics of tilting pad journal bearings. Tribol. Int. 57, 46–53 (2013). https://doi.org/10.1016/j.triboint.2012.07.005

    Article  Google Scholar 

  39. Wu, Y., Feng, K., Zhang, Y., Liu, W., Li, W.: Nonlinear dynamic analysis of a rotor-bearing system with porous tilting pad bearing support. Nonlinear Dyn. 94(2), 1391–1408 (2018)

    Article  Google Scholar 

  40. Kim, S., Palazzolo, A.B.: Bifurcation Analysis of a Rotor Supported by Five-Pad Tilting Pad Journal Bearings Using Numerical Continuation. J. Tribol. 140(2), 021701 (2018)

    Article  Google Scholar 

  41. Tofighi-Niaki, E., Asgharifard-Sharabiani, P., Ahmadian, H.: Nonlinear dynamics of a flexible rotor on tilting pad journal bearings experiencing rub–impact. Nonlinear Dyn. 94(4), 2937–2956 (2018). https://doi.org/10.1007/s11071-018-4535-0

    Article  Google Scholar 

  42. Okabe EP, Cavalca KL (2006) Rotordynamic analysis of systems with a non-linear model of tilting pad bearings. Paper presented at the 7th IFToMM-Conference on Rotor Dynamics, Vienna, Austria, 25–28 September

  43. Abbasi, A., Khadem, S., Bab, S., Friswell, M.: Vibration control of a rotor supported by journal bearings and an asymmetric high-static low-dynamic stiffness suspension. Nonlinear Dyn. 85(1), 525–545 (2016)

    Article  Google Scholar 

  44. Mansour, M., Balemi, S., Truöl, W.: Robustness of dynamic systems with parameter uncertainties. Birkhäuser, Basel (2012)

    MATH  Google Scholar 

Download references

Acknowledgment

The authors are grateful to financial supports of Energy and Control Center of Excellence of Amirkabir University of Technology (AUT) in 2015–2016 academic year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Bab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To find partial derivatives of G at first, following parameters are defined as:

$$\begin{gathered} n = \sqrt {1 - u_{p}^{2} - w_{p}^{2} } b = w_{p} - \left( {1 + u_{p} } \right)\tan \frac{\upsilon }{2}b_{u} = \frac{\partial b}{{\partial u}},b_{w} = \frac{\partial b}{{\partial w}},b_{uu} = \frac{{\partial^{2} b}}{{\partial u^{2} }},b_{ww} = \frac{{\partial^{2} b}}{{\partial w^{2} }}, \hfill \\ n_{u} = \frac{\partial n}{{\partial u}},n_{w} = \frac{\partial n}{{\partial w}},n_{uu} = \frac{{\partial^{2} n}}{{\partial u^{2} }},n_{ww} = \frac{{\partial^{2} n}}{{\partial w^{2} }} \hfill \\ \end{gathered}$$
(24)

The partial derivatives of G function can be written as,

$$\begin{aligned} \frac{{\partial^{2} G}}{{\partial u^{2} }} & = - \frac{{4n_{u} }}{{\left( {1 + \frac{{b^{2} }}{{n^{2} }}} \right)h^{2} }}\left( {\frac{{b_{w} }}{n} - \frac{{bn_{u} }}{{n^{2} }}} \right) + 2\tan^{ - 1} \left( \frac{b}{n} \right)\left( {\frac{{2n_{u}^{2} }}{{n^{3} }} - \frac{{n_{ww} }}{{n^{2} }}} \right) \\ & \quad + \frac{2}{h}\left( { - \frac{{\left( {\frac{{2bb_{u} }}{{n^{2} }} - \frac{{2b^{2} n_{u} }}{{n^{3} }}} \right)\left( {\frac{{b_{u} }}{n} - \frac{{bn_{u} }}{{n^{2} }}} \right)}}{{\left( {1 + \frac{{b^{2} }}{{n^{2} }}} \right)^{2} }} + \frac{{ - \frac{{2b_{u} n_{u} }}{{n^{2} }} + \frac{{2bn_{u}^{2} }}{{n^{3} }} + \frac{{b_{uu} }}{n} - \frac{{bh_{uu} }}{{n^{2} }}}}{{1 + \frac{{b^{2} }}{{n^{2} }}}}} \right) \\ \end{aligned}$$
(25)
$$\begin{aligned} \frac{{\partial^{2} G}}{\partial u\partial w} & = 4\tan \left( \frac{b}{n} \right)\frac{{n_{w} n_{u} }}{{n^{3} }} - \frac{{2\left( {\frac{{b_{w} }}{n} - \frac{{bn_{w} }}{{n^{2} }}} \right)n_{u} }}{{\left( {1 + \frac{{b^{2} }}{{n^{2} }}} \right)^{2} }} - \frac{{2n_{w} \left( {\frac{{b_{u} }}{n} - \frac{{bn_{u} }}{{n^{2} }}} \right)}}{{\left( {1 + \frac{{b^{2} }}{{n^{2} }}} \right)n^{2} }} - \frac{{2\left( {\frac{{2bb_{w} }}{{n^{2} }} - \frac{{2b^{2} n_{w} }}{{n^{3} }}} \right)\left( {\frac{{b_{x} }}{n} - \frac{{bn_{x} }}{{n^{2} }}} \right)}}{{\left( {1 + \frac{{b^{2} }}{{n^{2} }}} \right)n}} \\ & \quad - \frac{{2\tan^{ - 1} \left( \frac{b}{n} \right)n_{uw} }}{{n^{2} }} + \frac{2}{{\left( {1 + \frac{{b^{2} }}{{n^{2} }}} \right)h}}\left( { - \frac{{n_{w} b_{u} }}{{n^{2} }} - \frac{{b_{w} n_{u} }}{{n^{2} }} + \frac{{2bn_{y} n_{x} }}{{n^{3} }} + \frac{{b_{uw} }}{n} - \frac{{bn_{uw} }}{{n^{2} }}} \right) \\ \end{aligned}$$
(26)
$$\begin{aligned} \frac{{\partial^{2} G}}{{\partial w^{2} }} & = - \frac{{4n_{w} }}{{\left( {1 + \frac{{b^{2} }}{{n^{2} }}} \right)h^{2} }}\left( {\frac{{b_{u} }}{n} - \frac{{bn_{w} }}{{n^{2} }}} \right) + 2\tan^{ - 1} \left( \frac{b}{n} \right)\left( {\frac{{2n_{w}^{2} }}{{n^{3} }} - \frac{{n_{uu} }}{{n^{2} }}} \right) \\ & \quad + \frac{2}{h}\left( { - \frac{{\left( {\frac{{2bb_{w} }}{{n^{2} }} - \frac{{2b^{2} n_{w} }}{{n^{3} }}} \right)\left( {\frac{{b_{w} }}{n} - \frac{{bn_{w} }}{{n^{2} }}} \right)}}{{\left( {1 + \frac{{b^{2} }}{{n^{2} }}} \right)^{2} }} + \frac{{ - \frac{{2b_{w} n_{w} }}{{n^{2} }} + \frac{{2bn_{w}^{2} }}{{n^{3} }} + \frac{{b_{ww} }}{n} - \frac{{bh_{ww} }}{{n^{2} }}}}{{1 + \frac{{b^{2} }}{{n^{2} }}}}} \right) \\ \end{aligned}$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Khadem, S.E. & Bab, S. Applications of adaptive stiffness suspensions to vibration control of a high-speed stiff rotor with tilting pad bearings. Arch Appl Mech 91, 1819–1835 (2021). https://doi.org/10.1007/s00419-020-01856-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01856-3

Keywords

Navigation