Skip to main content
Log in

Detection of torsional guided wave generation using macro-fiber composite transducers and basis pursuit denoising

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

This article has been updated

Abstract

In engineering structures, such as large fluid-filled pipelines, continuous monitoring for damage detection is needed. To address this issue, we study the generation of guided waves in pipes by using a circumferential strip of macro fiber composite transducer to generate and detect torsional and flexural lower modes. The propagated elastic waves and their resulting reflected and mode-converted signals at the interaction wave discontinuity are post-processed with basis pursuit denoising using a Gabor dictionary to improve signal identification. Numerical results are obtained and experimentally tested on a stainless-steel pipe A-36 (43.6 and 48.2 mm in inner and outer diameter). It was found that the proposed method makes it possible to identify an artificial discontinuity by detecting the scattered wave and converted modes of a propagated torsional wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 13 January 2021

    Journal abbreviated title on top of the page has been corrected to “Arch Appl Mech”

References

  1. Kannan, E., Maxfield, B.W., Balasubramania, K.: SHM of pipes using torsional waves generated by in situ magnetostrictive tapes. Smart Mater. Struct. 16(6), 2505–2515 (2007)

    Article  Google Scholar 

  2. Cui, L., Lim, S.I., Shi, M., Liu, Y., Soh, C.K.: Detection and monitoring of axial cracks in cylindrical structures using torsional wave generated by piezoelectric macro-fiber composite. Health Monitor. Struct. Biol. Syst. 8348, 1–12 (2012)

    Google Scholar 

  3. Demma, A., Cawley, P., Lowe, M.: The reflection of the fundamental torsional mode from cracks and notches in pipes. J. Acoust. Soc. Am. 114(2), 611–6625 (2003)

    Article  Google Scholar 

  4. Løvstad, A., Cawley, P.: The reflection of the fundamental torsional guided wave from multiple circular holes in pipes. NDT&E Int. 44, 553–562 (2011)

    Article  Google Scholar 

  5. Rose, J.L.: Guided wave testing of water loaded structures. Mater. Eval. 61(1), 3–24 (2003)

    Google Scholar 

  6. Shin, H.J., Rose, J.L.: Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders. Ultrasonics 37, 355–363 (1999)

    Article  Google Scholar 

  7. Ratassepp, M., Fletcher, S., Lowe, M.J.S.: Scattering of the fundamental torsional mode at an axial crack in a pipe. J. Acoust. Soc. Am. 27(2), 730–740 (2010)

    Article  Google Scholar 

  8. Kwun, H., Kim, S.-Y., Choi, M.-S.: Reflection of the fundamental torsional wave from a stepwise thickness change in a pipe. J. Korean Phys. Soc. 46(6), 1352–1357 (2005)

    Google Scholar 

  9. Ma, J., Simonetti, F., Lowe, M.J.S.: Scattering of the fundamental torsional mode by an axisymmetric layer inside a pipe. J. Acoust. Soc. Am. 120(4), 1871–1880 (2006)

    Article  Google Scholar 

  10. Davies, J., Cawley, P.: The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 759–770 (2009)

    Article  Google Scholar 

  11. Cho, J., Anderson, M., Richards, R., Bahr, D., Richards, C.: Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment. J. Micromech. Microeng. 15, 1804–1809 (2005)

    Article  Google Scholar 

  12. Kundu, T.: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  13. Thien, A.B., Park, G., Farr, C.R.: Health monitoring of pipeline systems using macro-fiber composite activesensors. Steel Struct. 7, 33–48 (2007)

    Google Scholar 

  14. Meyers, F., Loh, K., Doods, J., Baltazar, A.: Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology 24(18), 1–10 (2013)

    Article  Google Scholar 

  15. Panda, S., Reddy, N.H., Kumar, A.S.P.: Design and finite element analysis of a short piezoelectric fiber-reinforced composite actuator. Arch. Appl. Mech. 85, 691–711 (2015)

    Article  Google Scholar 

  16. Baltazar, A., Rojas, E.: Structural health monitoring in cylindrical structures using helical guided wave propagation. In: International congress on ultrasonics, France (2015)

  17. Gang, R., Dongseok, Y., Hogeon, S., Minkyoo, S., Kyung-Young, J.: Feasibility of MFC (macro-fiber composite) transducers for guided wave technique. J. Korean Soc. Nondestruct. Test. 33(3), 264–269 (2013)

    Article  Google Scholar 

  18. Caliò, R., Rongala, U.B., Camboni, D., Milazzo, M., Stefanini, C., De Petris, G., Oddo, C.M.: Piezoelectric energy harvesting solutions. Sensors 14(3), 4755–4790 (2014)

    Article  Google Scholar 

  19. Hyun, J., Choi, Y.-T., Wereley, N.M.W., Purekar, A.S.: Energy harvesting devices using macro-fiber composite materials. J. Intell. Mater. Syst. Struct. 21, 647–658 (2010)

    Article  Google Scholar 

  20. Gao, L., Lu, Q., Fei, F., Liu, L., Liu, Y., Leng, J.: Active vibration control based on piezoelectric smart composite. Smart Mater. Struct. 22(12), 1–12 (2013)

    Article  Google Scholar 

  21. Eaton, M., Pullin, R., Holford, K., Evans, S., Featherston, C., Rose, A.: Use of macro fiber composite transducers as acoustic emission sensors. Sensor Sens. 1, 68–79 (2009)

    Google Scholar 

  22. Collet, M., Ruzzene, M., Cunefare, K.A.: Generation of Lame waves through surface mounted macro-fiber composite transducers. Smart Mater. Struct. 20, 025020 (2011)

    Article  Google Scholar 

  23. Rojas, E., Baltazar, A., Loh, K.: Damage detection using the signal entropy of an ultrasonic sensor network. Smart Mater. Struct. 24(7), 1–11 (2015)

    Article  Google Scholar 

  24. Thien, B., Puckett, A., Park, G., Farrar, C.: Detecting and locating cracks and corrosion in pipes using ultrasonic guided waves. In: Proceedings of 3rd European structural health monitoring conference, pp. 1045–1053 (2006)

  25. Thien, A.B., Chiamori, H.C., Ching, J.T., Wait, J.R., Park, G.: The use of macro-fibre composites for pipeline structural health assessment. Struct. Health Monitor. 15(1), 43–63 (2008)

    Article  Google Scholar 

  26. Cui, L., Liu, Y., Kiong, C.: Health monitoring of cylindrical structures using torsional wave generated by piezoelectric macro-fiber composite. In: Proc. SPIE 7984, Health Monitoring of Structural and Biological Systems 2011, San Diego (2011)

  27. Park, G., Rutherford, A.C., Wait, J.R., Nadler, B., Farrar, C., Claytor, T.N.: High-frequency response functions for composite plate monitoring with ultrasonic validation. AIAA J. 43, 2431–2437 (2005)

    Article  Google Scholar 

  28. Benjeddou, A., Al-Ajmi, M.: Analytical homogenizations of piezoceramic d15 shear macro-fibre composites. In: IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials, pp. 229–242 (2011)

  29. Kumar, R.: Dispersion of axially symmetric waves in empty and fluid-filled cylindrical shells. Acustica 27(6), 317–329 (1972)

    Google Scholar 

  30. Wooh, S.-C., Veroy, K.: Spectrotemporal analysis of guided-wave pulse-echo signals: part 1. Dispersive systems. Exp. Mech. 41, 324–331 (2001)

    Article  Google Scholar 

  31. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, Burlington (2009)

    MATH  Google Scholar 

  32. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Patel, H., Mewada, H.: Dictionary properties for sparse representation: implementation and analysis. J. Artif. Intell. 11(1), 1–8 (2018)

    Article  Google Scholar 

  34. Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)

    Article  Google Scholar 

  35. Zhang, G.M., Zhang, C.Z., Harvey, D.M.: Sparse signal representation and its applications in ultrasonic NDE. Ultrasonics 52(3), 351–363 (2012)

    Article  Google Scholar 

  36. IEEE, Standard on Piezolectricity, ANSI/IEEE, Std. 176 (1987)

  37. Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11, 246–258 (2001)

    Article  Google Scholar 

  38. Smart Material: Macro fiber composite (2017). http://www.smart-material.com/. Accessed Sept 2020

  39. Graff, K.F.: Wave motion in elastic solids. Dover Publications Inc, New York (1975)

    MATH  Google Scholar 

  40. Manka, M.R.A.M.M., Stepinski, T., Uhl, T.: Lamb wave transducer made of piezoelectric macro-fiber composite. Struct. Control Health Monitor. 20, 1138–1158 (2013)

    Article  Google Scholar 

  41. Rose, J.L.: Ultrasonic Waves in Solid Media, 1st edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  42. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CONACYT Ciencia-Basica (Project #CB-286907) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baltazar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, K., Rojas, E., Baltazar, A. et al. Detection of torsional guided wave generation using macro-fiber composite transducers and basis pursuit denoising. Arch Appl Mech 91, 1945–1958 (2021). https://doi.org/10.1007/s00419-020-01863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01863-4

Keywords

Navigation