Skip to main content
Log in

Heat transfer effects on electro-magnetohydrodynamic Carreau fluid flow between two micro-parallel plates with Darcy–Brinkman–Forchheimer medium

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

This article has been updated

Abstract

This article deals with heat transfer analysis on the Electro-magnetohydrodynamic Carreau fluid flow through a pair of rectangular plates. A Darcy–Brinkman–Forchheimer medium is considered for physical modeling. The flow is induced due to the Lorentz force, which occurs owing to the presence of an extrinsic imposed magnetic and electric field. The solutions are obtained with the help of numerical and semi-analytical/numerical schemes. A differential transform method (DTM) is employed to resolve the nonlinear coupled differential equations. The obtained solutions are discussed and plotted against all the physical parameters, and the Nusselt number is also addressed with the help of the table. The present outcomes are also plotted for the Newtonian fluid model as a particular case. The comparison of DTM is presented with a numerical shooting method for the Nusselt number. It is concluded from the analogy that the DTM method is very adaptive and stable to solve the nonlinear differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 12 January 2021

    Journal abbreviated title on top of the page has been corrected to “Arch Appl Mech”

Abbreviations

\({\mathbf{E}}\) :

Electric fields

\({\mathbf{B}}\) :

Magnetic field

\(\bar{y},\bar{x},\bar{z}\) :

Rectangular coordinate system

\(l\) :

Microchannel length

\(w\) :

Width

\(2H\) :

Height

\({\mathbf{v}}\) :

Velocity vector

\({\mathbf{F}}\) :

Body force

\(\zeta\) :

Stress tensor

\(p\) :

Pressure

\(k\) :

Porosity parameter

\(c_{\text{F}}\) :

Forchheimer coefficient

\(\rho\) :

Density

\(\bar{t}\) :

Time

\(\lambda\) :

Relaxation time

\(\dot{\gamma }\) :

Second invariant tensor

\(\mu\) :

Dynamic viscosity

\(n\) :

Power-law index

\(\tilde{\mu }_{\inf }\) :

Viscosity at infinite shear rate

\(\sigma\) :

Electrical conductivity

\({\mathbf{j}}\) :

Local ion current density

\(T\) :

Temperature

\(c\) :

Specific heat

\(h_{\text{f}}\) :

Heat flux vector

\(\upsilon\) :

Kinematic viscosity

\({\text{Ha}}\) :

Hartmann number

\(H_{1}\) :

Electrical strength

\({\text{We}}\) :

Weissenberg number

\(k_{1}\) :

Dimensionless porosity parameter

\(k_{\text{f}}\) :

Forchheimer number

\(N_{\text{n}}\) :

Nusselt number

\(T_{\text{s}} ,T_{\text{m}}\) :

Surface and mean temperatures

\(h_{\text{s}}\) :

Constant heat flux at the wall

\(B_{\text{m}}\) :

Brinkman number

References

  1. Nirmalkar, N., Chhabra, R.P., Poole, R.J.: Effect of shear-thinning behavior on heat transfer from a heated sphere in yield-stress fluids. Ind. Eng. Chem. Res. 52, 13490–13504 (2013)

    Article  Google Scholar 

  2. Gupta, A.K., Chhabra, R.P.: Combined effects of fluid shear-thinning and yield stress on heat transfer from an isothermal spheroid. Int. J. Heat Mass Transf. 93, 803–826 (2016)

    Article  Google Scholar 

  3. Tso, C.P., Sheela-Francisca, J., Hung, Y.M.: Viscous dissipation effects of power-law fluid flow within parallel plates with constant heat fluxes. J. Nonnewton Fluid Mech. 165, 625–630 (2010)

    Article  Google Scholar 

  4. Aydın, O., Avcı, M.: Viscous-dissipation effects on the heat transfer in a Poiseuille flow. Appl. Energy 83, 495–512 (2006)

    Article  Google Scholar 

  5. Zaib, A., Bhattacharyya, K., Uddin, M., Shafie, S. Dual solutions of non-Newtonian Casson fluid flow and heat transfer over an exponentially permeable shrinking sheet with viscous dissipation. Model. Simul. Eng. (2016). https://doi.org/10.1155/2016/6968371

  6. Hsiao, K.L.: Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Appl. Therm. Eng. 112, 1281–1288 (2017)

    Article  Google Scholar 

  7. Ezzat, M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B 405, 4188–4194 (2010)

    Article  Google Scholar 

  8. Labropulu, F., Li, D., Pop, I.: Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer. Int. J. Therm. Sci. 49, 1042–1050 (2010)

    Article  Google Scholar 

  9. Shojaeian, M., Koşar, A.: Convective heat transfer and entropy generation analysis on Newtonian and non-Newtonian fluid flows between parallel-plates under slip boundary conditions. Int. J. Heat Mass Transf. 70, 664–673 (2014)

    Article  Google Scholar 

  10. Dogonchi, A.S., Ganji, D.D.: Investigation of heat transfer for cooling turbine disks with a non-Newtonian fluid flow using DRA. Case Stud. Therm. Eng. 6, 40–51 (2015)

    Article  Google Scholar 

  11. Goswami, P., Mondal, P.K., Datta, A., Chakraborty, S.: Entropy generation minimization in an electroosmotic flow of non-Newtonian fluid: Effect of conjugate heat transfer. J. Heat Transf. (2016). https://doi.org/10.1115/1.4032431

  12. Rios-Iribe, E.Y., Cervantes-Gaxiola, M.E., Rubio-Castro, E., Hernández-Calderón, O.M.: Heat transfer analysis of a non-Newtonian fluid flowing through a Plate Heat Exchanger using CFD. Appl. Therm. Eng. 101, 262–272 (2016)

    Article  Google Scholar 

  13. Li, S.N., Zhang, H.N., Li, X.B., Li, Q., Li, F.C., Qian, S., Joo, S.W.: Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink. Appl. Therm. Eng. 115, 1213–1225 (2017)

    Article  Google Scholar 

  14. Rao, A.S., Amanulla, C.H., Nagendra, N., Beg, O.A., Kadir, A.: Hydromagnetic flow and heat transfer in a Williamson Non-Newtonian fluid from a Horizontal circular cylinder with Newtonian Heating. Int. J. Appl. Comput. Math. 3, 3389–3409 (2017)

    Article  MathSciNet  Google Scholar 

  15. Kaushik, P., Mondal, P.K., Pati, S., Chakraborty, S.: Heat transfer and entropy generation characteristics of a non-Newtonian fluid squeezed and extruded between two parallel plates. J. Heat Transf. (2017). https://doi.org/10.1115/1.4034898

  16. Wang, L., Tian, F.B.: Heat transfer in non-Newtonian flows by a hybrid immersed boundary–lattice Boltzmann and finite difference method. Appl. Sci. 8, 559 (2018)

    Article  Google Scholar 

  17. Aghakhani, S., Pordanjani, A.H., Karimipour, A., Abdollahi, A., Afrand, M.: Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput. Fluids 176, 51–67 (2018)

    Article  MathSciNet  Google Scholar 

  18. Ramandevi, B., Reddy, J.R., Sugunamma, V., Sandeep, N.: Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo–Christov heat flux. Alex. Eng. J. 57, 1009–1018 (2018)

    Article  Google Scholar 

  19. Khan, M., Alshomrani, A.S.: MHD stagnation-point flow of a Carreau fluid and heat transfer in the presence of convective boundary conditions. PLoS ONE 11, e0157180 (2016)

    Article  Google Scholar 

  20. Hayat, T., Farooq, S., Ahmad, B., Alsaedi, A.: Characteristics of convective heat transfer in the MHD peristalsis of Carreau fluid with Joule heating. AIP Adv. 6, 045302 (2016)

    Article  Google Scholar 

  21. Flilihi, E., Sriti, M., Achemlal, D.: Numerical solution on non-uniform mesh of Darcy–Brinkman–Forchheimer model for transient convective heat transfer over flat plate in saturated porous medium. Front. Heat Mass Transf 5, 12 (2018)

    Google Scholar 

  22. Saif, R.S., Muhammad, T., Sadia, H.: Significance of inclined magnetic field in Darcy–Forchheimer flow with variable porosity and thermal conductivity. Phys. A: Stat. Mech. Appl. 551, 124067 (2020)

  23. Selimefendigil, F., Öztop, H.F.: MHD Pulsating forced convection of nanofluid over parallel plates with blocks in a channel. Int. J. Mech. Sci. 157, 726–740 (2019)

    Article  Google Scholar 

  24. Adesanya, S.O., Onanaye, A.S., Adeyemi, O.G., Rahimi-Gorji, M., Alarifi, I.M.: Evaluation of heat irreversibility in couple stress falling liquid films along heated inclined substrate. J. Clean. Prod. 239, 117608 (2019)

    Article  Google Scholar 

  25. Souayeh, B., Kumar, K.G., Reddy, M.G., Rani, S., Hdhiri, N., Alfannakh, H., Rahimi-Gorji, M.: Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. J. Mol. Liq. 290, 111223 (2019)

    Article  Google Scholar 

  26. Hajizadeh, A., Shah, N.A., Shah, S.I., Animasaun, I.L., Rahimi-Gorji, M., Alarifi, I.M.: Free convection flow of nanofluids between two vertical plates with damped thermal flux. J. Mol. Liq. 289, 110964 (2019)

    Article  Google Scholar 

  27. Selimefendigil, F., Öztop, H.F.: Effects of local curvature and magnetic field on forced convection in a layered partly porous channel with area expansion. Int. J. Mech. Sci. 179, 105696 (2020)

  28. Selimefendigil, F., Öztop, H.F.: Combined effects of double rotating cones and magnetic field on the mixed convection of nanofluid in a porous 3D U-bend. Int. Commun. Heat Mass Transf. 116, 104703 (2020)

    Article  Google Scholar 

  29. Selimefendigil, F., Öztop, H.F.: Magnetohydrodynamics forced convection of nanofluid in multi-layered U-shaped vented cavity with a porous region considering wall corrugation effects. Int. Commun. Heat Mass Transf. 113, 104551 (2020)

    Article  Google Scholar 

  30. Çelik, İ., Öztürk, H.K.: Heat transfer and velocity in the squeezing flow between two parallel disks by Gegenbauer Wavelet Collocation Method. Arch. Appl. Mech. (2020). https://doi.org/10.1007/s00419-020-01782-4

    Article  Google Scholar 

  31. Darcy, H.P.: Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc. V. Dalamont (1856)

  32. Forchheimer, P.: Wasserbewegung durch boden. Z Vereins Dtsch. Ing. Düsseld. 45, 1782–1788 (1901)

    Google Scholar 

  33. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1, 27–34 (1949)

    Article  Google Scholar 

  34. Ali, N., Hayat, T.: Peristaltic motion of a Carreau fluid in an asymmetric channel. Appl. Math. Comput. 193, 535–552 (2007)

    Article  MathSciNet  Google Scholar 

  35. Zhou, J.K.: Differential Transformation and its Applications for Electrical Circuits. Huazhong University Press, Wuhan (1986)

    Google Scholar 

  36. Tripathi, D., Bég, O.A., Gupta, P.K., Radhakrishnamacharya, G., Mazumdar, J.: DTM simulation of peristaltic viscoelastic biofluid flow in asymmetric porous media: a digestive transport model. J. Bionic Eng. 12, 643–655 (2015)

    Article  Google Scholar 

  37. Zhang, L., Arain, M.B., Bhatti, M.M., Zeeshan, A., Hal-Sulami, H.: Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl. Math. Mech. 41, 637–654 (2020)

    Article  Google Scholar 

  38. Bensattalah, T., Zidour, M., Meziane, M.A., Daouadji, T.H., Tounsi, A.: Critical buckling load of carbon nanotube with non-local Timoshenko beam using the differential transform method. Int. J. Civ. Environ. Eng. 12, 637–644 (2018)

    Google Scholar 

  39. Si, D., Jian, Y.: Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls. J. Phys. D Appl. Phys. 48, 085501 (2015)

    Article  Google Scholar 

  40. Shahid, A., Huang, H., Bhatti, M.M., Zhang, L., Ellahi, R.: Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface. Mathematics 8, 380 (2020)

    Article  Google Scholar 

  41. Gupta, D., Kumar, L., Bég, O.A., Singh, B.: Finite-element simulation of mixed convection flow of micropolar fluid over a shrinking sheet with thermal radiation. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 228(1), 61–72 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

M. M. Bhatti was supported by the Cultivation Project of Young and Innovative Talents in Universities of Shandong Province [Nonlinear Sciences Research Team].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mubashir Bhatti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, M.M., Phali, L. & Khalique, C.M. Heat transfer effects on electro-magnetohydrodynamic Carreau fluid flow between two micro-parallel plates with Darcy–Brinkman–Forchheimer medium. Arch Appl Mech 91, 1683–1695 (2021). https://doi.org/10.1007/s00419-020-01847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01847-4

Keywords

Navigation