Skip to main content

Advertisement

Log in

Harvesting of Microalgae Biomass Using Ceramic Microfiltration at High Cross-Flow Velocity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the harvesting of microalgae by microfiltration (MF) on a ceramic membrane at relatively high cross-flow velocity (CFV) of interest for commercial processes. Pilot-scale harvesting was conducted with algal suspensions (Chlorella vulgaris and Tisochrysis lutea (T-Iso)) and algal supernatants (Porphyridium cruentum) to assess the effect of feedstock characteristics and understand flux decline mechanisms. In total recycle mode (C. vulgaris, 1 g/L), high steady-state permeation flux around 200 L/m2/h was achieved. Total filtration resistance was mainly due to cake resistance (Rc, 57%) and pore adsorption and blocking (Ra, 40%). The process hydrodynamic conditions seemed to have relatively little effect on Chlorella cell integrity. In concentration mode, average permeate flux decreased from 441 to 73 L/m2/h with increasing feed concentration (C. vulgaris, 0.25–1 g/L); the contribution of Rc decreased (82 to 57%), while that of Ra rose (7 to 40%). With T-Iso suspensions and P. cruentum supernatants at 1 g/L, average permeate flux was 59 and 49 L/m2/h, respectively, with predominance of Rc and Ra, respectively. Distinct fouling mechanisms were inferred to explain the superior filterability of C. vulgaris. The results show that ceramic membrane MF at relatively high CFV could be a suitable option for harvesting certain microalgae including C. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rocca, S., Agostini, A., Giuntoli, J., & Marelli, L. (2015). Biofuels from algae: technology options, energy balance and GHG emissions. Seville: European Commission Joint Research Centre.

    Google Scholar 

  3. Walsh, B. J., Rydzak, F., Palazzo, A., Kraxner, F., Herrero, M., Schenk, P. M., Ciais, P., Janssens, I. A., Peñuelas, J., Niederl-Schmidinger, A., & Obersteiner, M. (2015). New feed sources key to ambitious climate targets. Carbon Balance and Management, 10(1), 26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Garcia, J. G., de Vicente, M., & Beatriz Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10(5), 1017–1024.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D.-T., & Show, P. L. (2019). Microalgae: a potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16–24.

    Article  Google Scholar 

  6. Wibisono, Y., Nugroho, W. A., Devianto, L. A., Sulianto, A. A., & Bilad, M. R. (2019). Microalgae in food-energy-water nexus: a review on progress of forward osmosis applications. Membranes, 9(12), 166.

    Article  CAS  PubMed Central  Google Scholar 

  7. Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2, 1–15.

    Article  Google Scholar 

  8. Elegbede, I., Matemilola, S., Kies, F., Fadeyi, O., Saba, A., De Los Rios, P., Adekunbi, F., Lawal-Aree, A., & Fashina-Bombatag, H. (2018). Risk analysis and development of algae biofuel from aquatic and terrestrial systems. Energy Procedia, 128, 324–331.

    Article  Google Scholar 

  9. Perosa, A., Bordignon, G., Ravagnan, G., & Zinoviev, S. (2015). Algae as a potential source of food and energy in developing countries: sustainability, technology and selected case studies. Venice: Edizioni Ca’Foscari.

    Google Scholar 

  10. Ríos, S. D., Salvadó, J., Farriol, X., & Torras, C. (2012). Antifouling microfiltration strategies to harvest microalgae for biofuel. Bioresource Technology, 119, 406–418.

    Article  PubMed  Google Scholar 

  11. Barros, A. I., Gonçalves, A. L., Simões, M., & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: a review. Renewable and Sustainable Energy Reviews, 41, 1489–1500.

    Article  Google Scholar 

  12. Fasaei, F., Bitter, J. H., Slegers, P. M., & van Boxtel, A. J. B. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research, 31, 347–362.

    Article  Google Scholar 

  13. Bilad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2014). Membrane technology in microalgae cultivation and harvesting: a review. Biotechnology Advances, 32(7), 1283–1300.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, C., & Lan, C. Q. (2018). Effects of shear stress on microalgae – a review. Biotechnology Advances, 36(4), 986–1002.

    Article  PubMed  Google Scholar 

  15. Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B., & Muylaert, K. (2012). Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresource Technology, 105, 114–119.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, J., Zhu, Y., Tao, Y., Zhang, Y., Li, A., Li, T., Sang, M., & Zhang, C. (2013). Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnology for Biofuels, 6(1), 98.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gerardo, M. L., Zanain, M. A., & Lovitt, R. W. (2015). Pilot-scale cross-flow microfiltration of Chlorella minutissima: a theoretical assessment of the operational parameters on energy consumption. Chemical Engineering Journal, 280, 505–513.

    Article  CAS  Google Scholar 

  18. Nedzarek, A., Drost, A., Harasimiuk, F., Torz, A., & Bonislawska, M. (2015). Application of ceramic membranes for microalgal biomass accumulation and recovery of the permeate to be reused in algae cultivation. Journal of Photochemistry and Photobiology B: Biology, 153, 367–372.

  19. Zhang, X., Hu, Q., Sommerfeld, M., Puruhito, E., & Chen, Y. (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresource Technology, 101(14), 5297–5304.

    Article  CAS  PubMed  Google Scholar 

  20. Rossignol, N., Vandanjon, L., Jaouen, P., & Quéméneur, F. (1999). Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration. Aquacultural Engineering, 20(3), 191–208.

    Article  Google Scholar 

  21. Hwang, T., Park, S. J., Oh, Y. K., Rashid, N., & Han, J. I. (2013). Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane. Bioresource Technology, 139, 379–382.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, W., Zhang, W., Zhang, X., Amendola, P., Hu, Q., & Chen, Y. (2013a). Characterization of dissolved organic matters responsible for ultrafiltration membrane fouling in algal harvesting. Algal Research, 2(3), 223–229.

    Article  Google Scholar 

  23. Ahmad, A. L., Mat Yasin, N. H., Derek, C. J. C., & Lim, J. K. (2012). Crossflow microfiltration of microalgae biomass for biofuel production. Desalination, 302, 65–70.

    Article  CAS  Google Scholar 

  24. Chen, X., Huang, C., & Liu, T. (2012). Harvesting of microalgae Scenedesmus sp. using polyvinylidene fluoride microfiltration membrane. Desalination and Water Treatment, 45(1-3), 177–181.

    Article  CAS  Google Scholar 

  25. Rossi, N., Jaouen, P., Legentilhomme, P., & Petit, I. (2004). Harvesting of cyanobacterium Arthrospira platensis using organic filtration membranes. Food and Bioproducts Processing, 82(3), 244–250.

    Article  Google Scholar 

  26. Morineau-Thomas, O., Jaouen, P., & Legentilhomme, P. (2002). The role of exopolysaccharides in fouling phenomenon during ultrafiltration of microalgae (Chlorella sp. and Porphyridium purpureum): advantage of a swirling decaying flow. Bioprocess and Biosystems Engineering, 25, 35–42.

    Article  CAS  PubMed  Google Scholar 

  27. Jaouen, P., Lépine, B., Rossignol, N., Royer, R., & Quéméneur, F. (1999). Clarification and concentration with membrane technology of a phycocyanin solution extracted from Spirulina platensis. Biotechnology Techniques, 13(12), 877–881.

    Article  CAS  Google Scholar 

  28. Bhave, R., Kuritz, T., Powell, L., & Adcock, D. (2012). Membrane-based energy efficient dewatering of microalgae in biofuels production and recovery of value-added co-products. Environmental Science and Technology, 46(10), 5599–5606.

    Article  CAS  PubMed  Google Scholar 

  29. Wicaksana, F., Fane, A. G., Pongpairoj, P., & Field, R. (2012). Microfiltration of algae (Chlorella sorokiniana): critical flux, fouling and transmission. Journal of Membrane Science, 387-388, 83–92.

    Article  CAS  Google Scholar 

  30. Rossi, N., Derouiniot-Chaplain, M., Jaouen, P., Legentilhomme, P., & Petit, I. (2008). Arthrospira platensis harvesting with membranes: fouling phenomenon with limiting and critical flux. Bioresource Technology, 99(14), 6162–6167.

    Article  CAS  PubMed  Google Scholar 

  31. Rossi, N., Petit, I., Jaouen, P., Legentilhomme, P., & Derouiniot, M. (2005). Harvesting of cyanobacterium Arthrospira platensis using inorganic filtration membranes. Separation Science and Technology, 40(15), 3033–3050.

    Article  CAS  Google Scholar 

  32. Hofs, B., Ogier, J., Vries, D., Beerendonk, E. F., & Cornelissen, E. R. (2011). Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Separation and Purification Technology, 79(3), 365–374.

    Article  CAS  Google Scholar 

  33. Ripperger, S., Gösele, W., Alt, C., and Loewe, T. (2013). Filtration, 1. Fundamentals. In B. Elvers (Ed.), Ullmann’s encyclopedia of industrial chemistry (pp. 677–709). Hoboken: John Wiley & Sons.

  34. Bendif, E. M., Probert, I., Schroeder, D. C., & de Vargas, C. (2013). On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). Journal of Applied Phycology, 25(6), 1763–1776.

    Article  CAS  Google Scholar 

  35. da Silva Gorgônio, C. M., Gomes Aranda, D. A., & Couri, S. (2013). Morphological and chemical aspects of Chlorella pyrenoidosa, Dunaliella tertiolecta, Isochrysis galbana and Tetraselmis gracilis microalgae. Natural Science, 5(07), 783–791.

    Article  Google Scholar 

  36. Martinez-Fernandez, E., Acosta-Salmon, H., & Rangel-Davalos, C. (2004). Ingestion and digestion of 10 species of microalgae by winged pearl oyster Pteria sterna (Gould, 1851) larvae. Aquaculture, 230(1-4), 417–423.

    Article  Google Scholar 

  37. Gantt, E., & Conti, S. F. (1965). The ultrastructure of Porphyridium cruentum. Journal of Cell Biology, 26(2), 365–381.

    Article  CAS  Google Scholar 

  38. Liu, C. P., & Lin, L. P. (2001). Ultrastructural study and lipid formation of Isochrysis galbana CCMP1324. Botanical Bulletin of Academia Sinica, 42, 207–214.

    CAS  Google Scholar 

  39. Ramus, J., Kenney, B. E., & Shaughnessy, E. J. (1989). Drag reducing properties of microalgal exopolymers. Biotechnology and Bioengineering, 33(5), 550–556.

    Article  CAS  PubMed  Google Scholar 

  40. Bamba, B. S. B., Lozano, P., Adjé, F., Ouattara, A., Abert-Vian, M., Tranchant, C. C., & Lozano, Y. (2015). Effects of temperature and other operational parameters on Chlorella vulgaris mass cultivation in a simple and low-cost column photobioreactor. Applied Biochemistry and Biotechnology, 177(2), 389–406.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, X., Fan, L., & Roddick, F. A. (2013b). Influence of the characteristics of soluble algal organic matter released from Microcystis aeruginosa on the fouling of a ceramic microfiltration membrane. Journal of Membrane Science, 425-426, 23–29.

    Article  CAS  Google Scholar 

  42. Sah, A., Castricum, H. L., Bliek, A., Blank, D. H., & ten Elshof, J. E. (2004). Hydrophobic modification of γ-alumina membranes with organochlorosilanes. Journal of Membrane Science, 243(1-2), 125–132.

    Article  CAS  Google Scholar 

  43. Hung, M. T., & Liu, J. C. (2006). Microfiltration for separation of green algae from water. Colloids and Surfaces B: Biointerfaces, 51(2), 157–164.

    Article  CAS  PubMed  Google Scholar 

  44. Bowen, W. R., Calvo, J. I., & Hernández, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 101(1-2), 153–165.

    Article  CAS  Google Scholar 

  45. Rickman, M., Pellegrino, J., & Davis, R. (2012). Fouling phenomena during membrane filtration of microalgae. Journal of Membrane Science, 423-424, 33–42.

    Article  CAS  Google Scholar 

  46. Herbert, D., Philips, P. J., & Strange, R. E. (1971). Chemical analysis of microbial cells. In J. R. Norris & D. W. Ribbons (Eds.), Methods in microbiology (pp. 209–345). London: Academic Press.

    Google Scholar 

  47. Choi, H., Zhang, K., Dionysiou, D. D., Oerther, D. B., & Sorial, G. A. (2004). Influence of cross-flow velocity on membrane performance during filtration of biological suspension. Journal of Membrane Science, 248, 189–199.

    Article  Google Scholar 

  48. Purkait, M. K., Bhattacharya, P. K., & De, S. (2005). Membrane filtration of leather plant effluent: flux decline mechanism. Journal of Membrane Science, 258(1-2), 85–96.

    Article  CAS  Google Scholar 

  49. Ladner, D. A., Vardon, D. R., & Clark, M. M. (2010). Effects of shear on microfiltration and ultrafiltration fouling by marine bloom-forming algae. Journal of Membrane Science, 356(1-2), 33–43.

    Article  CAS  Google Scholar 

  50. Qu, F., Liang, H., He, J., Ma, J., Wang, Z., Yu, H., & Li, G. (2012). Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Research, 46(9), 2881–2890.

    Article  CAS  PubMed  Google Scholar 

  51. Chiou, Y. T., Hsieh, M. L., & Yeh, H. H. (2010). Effect of algal extracellular polymer substances on UF membrane fouling. Desalination, 250(2), 648–652.

    Article  CAS  Google Scholar 

  52. Ahmad, A. L., Mat Yasin, N. H., Derek, C. J., & Lim, J. K. (2013). Microfiltration of Chlorella sp.: influence of material and membrane pore size. Membrane Water Treatment, 4(2), 143–155.

    Article  Google Scholar 

  53. Thomas, W. H., & Gibson, C. H. (1990). Effects of small-scale turbulence on microalgae. Journal of Applied Phycology, 2(1), 71–77.

    Article  Google Scholar 

  54. González-Fernández, C., & Ballesteros, M. (2013). Microalgae autoflocculation: an alternative to high-energy consuming harvesting methods. Journal of Applied Phycology, 25(4), 991–999.

    Article  Google Scholar 

  55. Parker, C. L. (2013). The effects of environmental stressors on biofilm formation by Chlorella vulgaris. M.Sc. Thesis. Appalachian State University, NC, USA.

  56. Chow, C. W., Panglisch, S., House, J., Drikas, M., Burch, M. D., & Gimbel, R. (1997). A study of membrane filtration for the removal of cyanobacterial cells. Journal of Water Supply Research and Technology-AQUA, 46, 324–334.

  57. Mota, M., Teixeira, J. A., & Yelshin, Y. (2002). Influence of cell-shape on the cake resistance in dead-end and cross-flow filtrations. Separation and Purification Technology, 27(2), 137–144.

    Article  CAS  Google Scholar 

  58. Drexler, I. L. C., & Yeh, D. H. (2014). Membrane applications for microalgae cultivation and harvesting: a review. Reviews in Environmental Science and Bio/Technology, 13(4), 487–504.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the late Dr. Yves Lozano for his constructive comments on the study. They thank André Banville (Université de Moncton) for his skilled assistance with the electronic artwork, and the French Embassy in Côte d’Ivoire and the Centre International de Recherche Agronomique pour le Développement (CIRAD) for the scholarship and financial support to B.S.B.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bio Sigui B. Bamba or Carole C. Tranchant.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamba, B.S.B., Tranchant, C.C., Ouattara, A. et al. Harvesting of Microalgae Biomass Using Ceramic Microfiltration at High Cross-Flow Velocity. Appl Biochem Biotechnol 193, 1147–1169 (2021). https://doi.org/10.1007/s12010-020-03455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03455-y

Keywords

Navigation