Skip to main content
Log in

A Spatially Sixth-Order Hybrid L1-CCD Method for Solving Time Fractional Schrödinger Equations

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider highly accurate schemes for nonlinear time fractional Schrödinger equations (NTFSEs). While an L1 strategy is employed for approximating the Caputo fractional derivative in the temporal direction, compact CCD finite difference approaches are incorporated in the space. A highly effective hybrid L1-CCD method is implemented successfully. The accuracy of this linearized scheme is order six in space, and order 2 − γ in time, where 0 < γ < 1 is the order of the Caputo fractional derivative involved. It is proved rigorously that the hybrid numerical method accomplished is unconditionally stable in the Fourier sense. Numerical experiments are carried out with typical testing problems to validate the effectiveness of the new algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo: Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos 5. World Scientific, Hackensack, 2012.

    Book  Google Scholar 

  2. D. A. Benson, R. Schumer, M. M. Meerschaert, S. W. Wheatcraft: Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Media 42 (2001), 211–240.

    Article  MathSciNet  Google Scholar 

  3. A. H. Bhrawy, E. H. Doha, S. S. Ezz-Eldien, R. A. Van Gorder: A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems. Eur. Phys. J. Plus 129 (2014), Article ID 260, 21 pages.

  4. A. G. Bratsos: A linearized finite-difference scheme for the numerical solution of the nonlinear cubic Schrödinger equation. Korean J. Comput. Appl. Math. 8 (2001), 459–467.

    Article  MathSciNet  Google Scholar 

  5. Q. Chang, E. Jia, W. Sun: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148 (1999), 397–415.

    Article  MathSciNet  Google Scholar 

  6. X. Chen, Y. Di, J. Duan, D. Li: Linearized compact ADI schemes for nonlinear time-fractional Schrödinger equations. Appl. Math. Lett. 84 (2018), 160–167.

    Article  MathSciNet  Google Scholar 

  7. B. Chen, D. He, K. Pan: A linearized high-order combined compact difference scheme for multi-dimensional coupled Burgers’ equations. Numer. Math., Theory Methods Appl. 11 (2018), 299–320.

    Article  MathSciNet  Google Scholar 

  8. B. Chen, D. He, K. Pan: A CCD-ADI method for two-dimensional linear and nonlinear hyperbolic telegraph equations with variable coefficients. Int. J. Comput. Math. 96 (2019), 992–1004.

    Article  MathSciNet  Google Scholar 

  9. P. C. Chu, C. Fan: A three-point combined compact difference scheme. J. Comput. Phys. 140 (1998), 370–399.

    Article  MathSciNet  Google Scholar 

  10. M. Cui: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228 (2009), 7792–7804.

    Article  MathSciNet  Google Scholar 

  11. M. Dehghan, A. Taleei: A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Comput. Phys. Commun. 181 (2010), 43–51.

    Article  Google Scholar 

  12. R. P. Feynman, A. R. Hibbs: Quantum Mechanics and Path Integrals. Dover Publications, New York, 2010.

    MATH  Google Scholar 

  13. G.-H. Gao, H.-W. Sun: Three-point combined compact alternating direction implicit difference schemes for two-dimensional time-fractional advection-diffusion equations. Commun. Comput. Phys. 17 (2015), 487–509.

    Article  MathSciNet  Google Scholar 

  14. G.-H. Gao, H.-W. Sun: Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions. J. Comput. Phys. 298 (2015), 520–538.

    Article  MathSciNet  Google Scholar 

  15. G.-H. Gao, H.-W. Sun, Z.-Z. Sun: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280 (2015), 510–528.

    Article  MathSciNet  Google Scholar 

  16. G.-H. Gao, Z.-Z. Sun: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230 (2011), 586–595.

    Article  MathSciNet  Google Scholar 

  17. G.-H. Gao, Z.-Z. Sun, H.-W. Zhang: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259 (2014), 33–50.

    Article  MathSciNet  Google Scholar 

  18. A. K. Golmankhaneh, D. Baleanu: Calculus on fractals. Fractional Dynamics. De Gruyter, Berlin, 2015, pp. 307–332.

    Google Scholar 

  19. D. He: An unconditionally stable spatial sixth-order CCD-ADI method for the two-dimensional linear telegraph equation. Numer. Algorithms 72 (2016), 1103–1117.

    Article  MathSciNet  Google Scholar 

  20. D. He, K. Pan: A fifth-order combined compact difference scheme for the Stokes flow on polar geometries. East Asian J. Appl. Math. 7 (2017), 714–727.

    Article  MathSciNet  Google Scholar 

  21. D. He, K. Pan: An unconditionally stable linearized CCD-ADI method for generalized nonlinear Schrödinger equations with variable coefficients in two and three dimensions. Comput. Math. Appl. 73 (2017), 2360–2374.

    Article  MathSciNet  Google Scholar 

  22. T. N. Jones, Q. Sheng: Asymptotic stability of a dual-scale compact method for approximating highly oscillatory Helmholtz solutions. J. Comput. Phys. 392 (2019), 403–418.

    Article  MathSciNet  Google Scholar 

  23. N. A. Khan, M. Jamil, A. Ara: Approximate solutions to time-fractional Schrödinger equation via homotopy analysis method. Int. Sch. Res. Not. 2012 (2012), Article ID 197068, 11 pages.

  24. R. Klages, G. Radons, I. M. Sokolov (eds.): Anomalous Transport: Foundations and Applications. Wiley, Weinheim, 2008.

    Google Scholar 

  25. N. Laskin: Fractional quantum mechanics and Lévy path integrals. Phys. Lett., A 268 (2000), 298–305.

    Article  MathSciNet  Google Scholar 

  26. S. T. Lee, J. Liu, H.-W. Sun: Combined compact difference scheme for linear second-order partial differential equations with mixed derivative. J. Comput. Appl. Math. 264 (2014), 23–37.

    Article  MathSciNet  Google Scholar 

  27. L. Z. Li, H.-W. Sun, S.-C. Tam: A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations. Comput. Phys. Commun. 187 (2015), 38–48.

    Article  MathSciNet  Google Scholar 

  28. D. Li, J. Wang, J. Zhang: Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM. J. Sci. Comput. 39 (2017), A3067–A3088.

    Article  Google Scholar 

  29. H.-L. Liao, H.-S. Shi, Y. Zhao: Numerical study of fourth-order linearized compact schemes for generalized NLS equations. Comput. Phys. Commun. 185 (2014), 2240–2249.

    Article  MathSciNet  Google Scholar 

  30. A. Mohebbi, M. Abbaszadeh, M. Dehghan: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng. Anal. Bound. Elem. 37 (2013), 475–485.

    Article  MathSciNet  Google Scholar 

  31. D. A. Murio: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56 (2008), 1138–1145.

    Article  MathSciNet  Google Scholar 

  32. M. Naber: Time fractional Schrödinger equation. J. Math. Phys. 45 (2004), 3339–3352.

    Article  MathSciNet  Google Scholar 

  33. S. Z. Rida, H. M. El-Sherbiny, A. A. M. Arafa: On the solution of the fractional nonlinear Schrödinger equation. Phys. Lett., A 372 (2008), 553–558.

    Article  MathSciNet  Google Scholar 

  34. E. Scalas, R. Gorenflo, F. Mainardi: Fractional calculus and continuous-time finance. Phys. A 284 (2000), 376–384.

    Article  MathSciNet  Google Scholar 

  35. E. Shivanian, A. Jafarabadi: Error and stability analysis of numerical solution for the time fractional nonlinear Schrödinger equation on scattered data of general-shaped domains. Numer. Methods Partial Differ. Equations 33 (2017), 1043–1069.

    Article  Google Scholar 

  36. H.-W. Sun, L. Z. Li: A CCD-ADI method for unsteady convection-diffusion equations. Comput. Phys. Commun. 185 (2014), 790–797.

    Article  MathSciNet  Google Scholar 

  37. Z.-Z. Sun, X. Wu: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56 (2006), 193–209.

    Article  MathSciNet  Google Scholar 

  38. Y.-M. Wang, L. Ren: Efficient compact finite difference methods for a class of time-fractional convection-reaction-diffusion equations with variable coefficients. Int. J. Comput. Math. 96 (2019), 264–297.

    Article  MathSciNet  Google Scholar 

  39. Z. Wang, S. Vong: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277 (2014), 1–15.

    Article  MathSciNet  Google Scholar 

  40. L. Wei, Y. He, X. Zhang, S. Wang: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59 (2012), 28–34.

    Article  MathSciNet  Google Scholar 

  41. Y. Xu, L. Zhang: Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrödinger equation. Comput. Phys. Commun. 183 (2012), 1082–1093.

    Article  MathSciNet  Google Scholar 

  42. L. Zhu, Q. Sheng: A note on the adaptive numerical solution of a Riemann-Liouville space-fractional Kawarada problem. J. Comput. Appl. Math. 374 (2020), Article ID 112714, 14 pages.

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their time spent and extremely valuable remarks given. Their suggestions have significantly improved the quality and presentation of this paper. The last author appreciates particularly the M3HPCST-2020 conference and its organizers. Last but not least, the authors would also thank the editor for the tremendous amount of encouragement received throughout the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Sheng.

Additional information

The first three authors are supported in part by the Science and Technology Development Fund and University of Macau, Macau, through Research Grants (No. 0118/2018/A3) and (MYRG2018-00015-FST). The last author is supported in part by a Research Award from the CAS, Baylor University, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CH., Jin, JW., Sun, HW. et al. A Spatially Sixth-Order Hybrid L1-CCD Method for Solving Time Fractional Schrödinger Equations. Appl Math 66, 213–232 (2021). https://doi.org/10.21136/AM.2020.0339-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2020.0339-19

Keywords

MSC 2020

Navigation