Skip to main content
Log in

Incompressible Limit of a Fluid-Particle Interaction Model

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The incompressible limit of the weak solutions to a fluid-particle interaction model is studied in this paper. By using the relative entropy method and refined energy analysis, we show that, for well-prepared initial data, the weak solutions of the compressible fluid-particle interaction model converge to the strong solution of the incompressible Navier-Stokes equations as long as the Mach number goes to zero. Furthermore, the desired convergence rates are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ballew, K. Trivisa: Suitable weak solutions and low stratification singular limit for a fluid particle interaction model. Q. Appl. Math. 70 (2012), 469–494.

    Article  MathSciNet  Google Scholar 

  2. J. Ballew, K. Trivisa: Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system. Nonlinear Anal., Theory Methods Appl., Ser. A 91 (2013), 1–19.

    Article  MathSciNet  Google Scholar 

  3. C. Baranger, L. Boudin, P.-E. Jabin, S. Mancini: A modeling of biospray for the upper airways. ESAIM, Proc. 14 (2005), 41–47.

    Article  MathSciNet  Google Scholar 

  4. H. Beirão da Veiga: Singular limits in compressible fluid dynamics. Arch. Ration. Mech. Anal. 128 (1994), 313–327.

    Article  MathSciNet  Google Scholar 

  5. S. Berres, R. Bürger, K. H. Karlsen, E. M. Tory: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64 (2003), 41–80.

    Article  MathSciNet  Google Scholar 

  6. J. A. Carrillo, T. Goudon: Stability and asymptotic analysis of a fluid-particle interaction model. Commun. Partial Differ. Equations 31 (2006), 1349–1379.

    Article  MathSciNet  Google Scholar 

  7. J. A. Carrillo, T. Karper, K. Trivisa: On the dynamics of a fluid-particle interaction model: The bubbling regime. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2778–2801.

    Article  MathSciNet  Google Scholar 

  8. J.-Y. Chemin, N. Masmoudi: About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33 (2001), 84–112.

    Article  MathSciNet  Google Scholar 

  9. Y. Chen, S. Ding, W. Wang: Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete Contin. Dyn. Syst. 36 (2016), 5287–5307.

    Article  MathSciNet  Google Scholar 

  10. Z.-M. Chen, X. Zhai: Global large solutions and incompressible limit for the compressible Navier-Stokes equations. J. Math. Fluid Mech. 21 (2019), Article ID 26, 23 pages.

  11. P. Constantin, N. Masmoudi: Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D. Commun. Math. Phys. 278 (2008), 179–191.

    Article  MathSciNet  Google Scholar 

  12. R. Danchin, P. B. Mucha: Compressible Navier-Stokes system: Large solutions and incompressible limit. Adv. Math. 320 (2017), 904–925.

    Article  MathSciNet  Google Scholar 

  13. D. Donatelli, E. Feireisl, A. Novotný: On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete Contin. Dyn. Syst., Ser. B 13 (2010), 783–798.

    MathSciNet  MATH  Google Scholar 

  14. S. Evje, H. Wen, C. Zhu: On global solutions to the viscous liquid-gas model with unconstrained transition to single-phase flow. Math. Models Methods Appl. Sci. 27 (2017), 323–346.

    Article  MathSciNet  Google Scholar 

  15. E. Feireisl, M. Petcu: Stability of strong solutions for a model of incompressible two-phase flow under thermal fluctuations. J. Differ. Equation 267 (2019), 1836–1858.

    Article  MathSciNet  Google Scholar 

  16. L. Hsiao, Q. Ju, F. Li: The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data. Chin. Ann. Math., Ser. B 30 (2009), 17–26.

    Article  MathSciNet  Google Scholar 

  17. B. Huang, J. Huang, H. Wen: Low Mach number limit of the compressible Navier-Stokes-Smoluchowski equations in multi-dimensions. J. Math. Phys. 60 (2019), Article ID 061501, 20 pages.

  18. F. Huang, D. Wang, D. Yuan: Nonlinear stability and existence of vortex sheets for in-viscid liquid-gas two-phase flow. Discrete Contin. Dyn. Syst. 39 (2019), 3535–3575.

    Article  MathSciNet  Google Scholar 

  19. S. Klainerman, A. Majda: Compressible and incompressible fluids. Commun. Pure Appl. Math. 35 (1982), 629–651.

    Article  MathSciNet  Google Scholar 

  20. C.-K. Lin: On the incompressible limit of the compressible Navier-Stokes equations. Commun. Partial Differ. Equations 20 (1995), 677–707.

    Article  MathSciNet  Google Scholar 

  21. P.-L. Lions: Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models. Oxford Lecture Series in Mathematics and Its Applications 10. Clarendon Press, Oxford, 1998.

    Google Scholar 

  22. P.-L. Lions, N. Masmoudi: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl., IX. Sér 77 (1998), 585–627.

    Article  MathSciNet  Google Scholar 

  23. N. Masmoudi: Incompressible, inviscid limit of the compressible Navier-Stokes system. Ann. Inst. Henri Poincaré, Anal. Non linéaire 18 (2001), 199–224.

    Article  MathSciNet  Google Scholar 

  24. Y. Ou: Incompressible limits of the Navier-Stokes equations for all time. J. Differ. Equations 247 (2009), 3295–3314.

    Article  MathSciNet  Google Scholar 

  25. N. Vauchelet, E. Zatorska: Incompressible limit of the Navier-Stokes model with a growth term. Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 34–59.

    Article  MathSciNet  Google Scholar 

  26. I. Vinkovic, C. Aguirre, S. Simoëns, M. Gorokhovski: Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow. Int. J. Multiphase Flow 32 (2006), 344–364.

    Article  Google Scholar 

  27. F. A. Williams: Spray combustion and atomization. Phys. Fluids 1 (1958), 541–545.

    Article  Google Scholar 

  28. F. A. Williams: Combustion Theory. CRC Press, Boca Raton, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Yang.

Additional information

This work was partially supported by National Natural Science Foundation of China (No. 12061040).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, J. Incompressible Limit of a Fluid-Particle Interaction Model. Appl Math 66, 69–86 (2021). https://doi.org/10.21136/AM.2020.0253-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2020.0253-19

Keywords

MSC 2020

Navigation