Skip to main content
Log in

A Millifluidic Perfusion Cassette for Studying the Pathogenesis of Enteric Infections Using Ex-Vivo Organoids

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To generate physiologically-relevant experimental models, the study of enteric diarrheal diseases is turning increasingly to advanced in vitro models that combine ex vivo, stem cell-derived “organoid” cell lines with bioengineered culture environments that expose them to mechanical stimuli, such as fluid flow. However, such approaches require considerable technical expertise with both microfabrication and organoid culture, and are, therefore, inaccessible to many researchers. For this reason, we have developed a perfusion system that is simple to fabricate, operate, and maintain. Its dimensions approximate the volume and cell culture area of traditional 96-well plates and allow the incorporation of fastidious primary, stem cell-derived cell lines with only minimal adaptation of their established culture techniques. We show that infections with enteroaggregative E. coli and norovirus, common causes of infectious diarrhea, in the system display important differences from static models, and in some ways better recreate the pathophysiology of in vivo infections. Furthermore, commensal strains of bacteria can be added alongside the pathogens to simulate the effects of a host microbiome on the infectious process. For these reasons, we believe that this perfusion system is a powerful, yet easily accessible tool for studying host-pathogen interactions in the human intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Blutt, S. E., J. R. Broughman, W. Zou, X. L. Zeng, U. C. Karandikar, J. In, N. C. Zachos, O. Kovbasnjuk, M. Donowitz, and M. K. Estes. Gastrointestinal microphysiological systems. Exp. Biol. Med. 242:1633–1642, 2017.

    Article  CAS  Google Scholar 

  2. De Weirdt, R., and T. Van De Wiele. Micromanagement in the gut: Microenvironmental factors govern colon mucosal biofilm structure and functionality. NPJ Biofilms Microbiomes 1:1–6, 2015.

    Article  Google Scholar 

  3. Donaldson, G. P., S. M. Lee, and S. K. Mazmanian. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14:20–32, 2015.

    Article  Google Scholar 

  4. Donowitz, M., D. H. Alpers, H. J. Binder, T. Brewer, J. Carrington, and M. J. Grey. Translational approaches for pharmacotherapy development for acute diarrhea. Gastroenterology 142:e1–e9, 2012.

    Article  Google Scholar 

  5. Ebong, E. E., S. V. Lopez-Quintero, V. Rizzo, D. C. Spray, and J. M. Tarbell. Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr. Biol. 6:338–347, 2014.

    Article  CAS  Google Scholar 

  6. Ettayebi, K., S. E. Crawford, K. Murakami, J. R. Broughman, U. Karandikar, V. R. Tenge, F. H. Neill, S. E. Blutt, X.-L. Zeng, L. Qu, B. Kou, A. R. Opekun, D. Burrin, D. Y. Graham, S. Ramani, R. L. Atmar, and M. K. Estes. Replication of human noroviruses in stem cell-derived human enteroids. Science. 353:1387–1393, 2016.

    Article  Google Scholar 

  7. Foulke-Abel, J., J. In, O. Kovbasnjuk, N. C. Zachos, K. Ettayebi, S. E. Blutt, J. M. Hyser, X.-L. Zeng, S. E. Crawford, J. R. Broughman, M. K. Estes, and M. Donowitz. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp. Biol. Med. 239:1124–1134, 2014.

    Article  Google Scholar 

  8. Frohlich, E. M., X. Zhang, and J. L. Charest. The use of controlled surface topography and flow-induced shear stress to influence renal epithelial cell function. Integr. Biol. 4:75–83, 2012.

    Article  CAS  Google Scholar 

  9. Gayer, C. P., and M. D. Basson. The effects of mechanical forces on intestinal physiology and pathology. Cell. Signal. 21:1237–1244, 2009.

    Article  CAS  Google Scholar 

  10. Huang, R. B., and O. Eniola-Adefeso. Shear stress modulation of IL-1β-induced E-selectin expression in human endothelial cells. PLoS ONE 7:e31874, 2012.

    Article  CAS  Google Scholar 

  11. Ishikawa, T., T. Sato, G. Mohit, Y. Imai, and T. Yamaguchi. Transport phenomena of microbial flora in the small intestine with peristalsis. J. Theor. Biol. 279:63–73, 2011.

    Article  CAS  Google Scholar 

  12. James, B. D., N. Montoya, and J. B. Allen. MechanoBioTester: A decoupled multistimulus cell culture device for studying complex microenvironments in vitro. ACS Biomater. Sci. Eng. 6:3673–3689, 2020.

    Article  CAS  Google Scholar 

  13. Kasendra, M., A. Tovaglieri, A. Sontheimer-Phelps, S. Jalili-Firoozinezhad, A. Bein, A. Chalkiadaki, W. Scholl, C. Zhang, H. Rickner, C. A. Richmond, H. Li, D. T. Breault, and D. E. Ingber. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci. Rep. 8:2871, 2018.

    Article  Google Scholar 

  14. Kim, H. J., D. Huh, G. A. Hamilton, and D. E. Ingber. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174, 2012.

    Article  CAS  Google Scholar 

  15. Kim, H. J., H. Li, J. J. Collins, and D. E. Ingber. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. 113:E7–E15, 2015.

    Article  Google Scholar 

  16. Kotloff, K. L., et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 382:209–222, 2013.

    Article  Google Scholar 

  17. Kovbasnjuk, O., N. C. Zachos, J. In, J. Foulke-Abel, K. Ettayebi, J. M. Hyser, J. R. Broughman, X.-L. Zeng, S. Middendorp, H. R. de Jonge, M. K. Estes, and M. Donowitz. Human enteroids: preclinical models of non-inflammatory diarrhea. Stem Cell Res. Ther. 4:S3, 2013.

    Article  Google Scholar 

  18. Lentle, R. G., and P. W. M. Janssen. Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: A review. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 178:673–690, 2008.

    Article  CAS  Google Scholar 

  19. Mohamed, J. A., D. B. Huang, Z. D. Jiang, H. L. DuPont, J. P. Nataro, J. Belkind-Gerson, and P. C. Okhuysen. Association of putative enteroaggregative Escherichia coli virulence genes and biofilm production in isolates from travelers to developing countries. J. Clin. Microbiol. 45:121–126, 2007.

    Article  CAS  Google Scholar 

  20. Persat, A., C. D. Nadell, M. K. Kim, F. Ingremeau, A. Siryaporn, K. Drescher, N. S. Wingreen, B. L. Bassler, Z. Gitai, and H. A. Stone. The mechanical world of bacteria. Cell 161:988–997, 2015.

    Article  CAS  Google Scholar 

  21. Philipson, C. W., J. Bassaganya-Riera, and R. Hontecillas. Animal models of enteroaggregative Escherichia coli infection. Gut Microbes 4:281–291, 2013.

    Article  Google Scholar 

  22. Preidis, G. A., C. Hill, R. L. Guerrant, B. S. Ramakrishna, G. W. Tannock, and J. Versalovic. Probiotics, enteric and diarrheal diseases, and global health. Gastroenterology 140:8–14, 2011.

    Article  Google Scholar 

  23. Rajan, A., L. Vela, X. Zeng, X. Yu, N. Shroyer, S. E. Blutt, N. M. Poole, L. G. Carlin, J. P. Nataro, M. K. Estes, P. C. Okhuysen, and A. W. Maresso. Novel segment- and host-specific patterns of enteroaggregative Escherichia coli adherence to human intestinal enteroids. MBio 9:1–15, 2018.

    Article  Google Scholar 

  24. Ruiz-Perez, F., J. Sheikh, S. Davis, E. C. Boedeker, and J. P. Nataro. Use of a continuous-flow anaerobic culture to characterize enteric virulence gene expression. Infect. Immun. 72:3793–3802, 2004.

    Article  CAS  Google Scholar 

  25. Sato, T., and H. C. Clevers. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:1190–1194, 2013.

    Article  CAS  Google Scholar 

  26. Sato, T., R. G. J. Vries, H. J. Snippert, M. van de Wetering, N. Barker, D. E. Stange, J. H. van Es, A. Abo, P. Kujala, P. J. Peters, and H. C. Clevers. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265, 2009.

    Article  CAS  Google Scholar 

  27. Saxena, K., S. E. Blutt, K. Ettayebi, X. Zeng, J. R. Broughman, S. E. Crawford, U. C. Karandikar, N. P. Sastri, M. E. Conner, A. R. Opekun, D. Y. Graham, W. Qureshi, V. Sherman, J. Foulke-Abel, J. In, O. Kovbasnjuk, N. C. Zachos, M. Donowitz, and K. Estes. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol 90:43–56, 2016.

    Article  CAS  Google Scholar 

  28. Schroten, H., F. G. Hanisch, and G. S. Hansman. Human norovirus interactions with histo-blood group antigens and human milk oligosaccharides. J. Virol. 90:5855–5859, 2016.

    Article  CAS  Google Scholar 

  29. Shah, P., J. V. Fritz, E. Glaab, M. S. Desai, K. Greenhalgh, A. Frachet, M. Niegowska, M. Estes, C. Jager, C. Seguin-Devaux, F. Zenhausern, and P. Wilmes. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 2016. https://doi.org/10.1038/ncomms11535.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thomas, W. E., L. M. Nilsson, M. Forero, E. V. Sokurenko, and V. Vogel. Shear-dependent “stick-and-roll” adhesion of type 1 fimbriated Escherichia coli. Mol. Microbiol. 53:1545–1557, 2004.

    Article  CAS  Google Scholar 

  31. VanDussen, K. L., J. M. Marinshaw, N. Shaikh, H. Miyoshi, C. Moon, P. I. Tarr, M. A. Ciorba, and T. S. Stappenbeck. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64:911–920, 2015.

    Article  CAS  Google Scholar 

  32. Velarde, J. J., K. M. Varney, K. G. Inman, M. Farfan, E. Dudley, J. Fletcher, D. J. Weber, and J. P. Nataro. Solution structure of the novel dispersin protein of enteroaggregative Escherichia coli. Mol. Microbiol. 66:1123–1135, 2007.

    Article  CAS  Google Scholar 

  33. Wang, G., G. L. Tiemeier, B. M. van den Berg, and T. J. Rabelink. Endothelial glycocalyx hyaluronan: regulation and role in prevention of diabetic complications. Am. J. Pathol. 190:781–790, 2020.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health (U19 AI116497 and F30 DK108541) and CPRIT RP160283 – Baylor College of Medicine Comprehensive Cancer Training Program. The authors thank Drs. Noah Shroyer and Sue Crawford for helpful discussions and insights, Dr. Jim Broughman and Xi-Lei Zheng for technical assistance with the flow experiments, and Dr. Jennifer Connell for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jane Grande-Allen.

Additional information

Associate Editor Sriram Neelamegham oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, R.L., Hewes, S.A., Rajan, A. et al. A Millifluidic Perfusion Cassette for Studying the Pathogenesis of Enteric Infections Using Ex-Vivo Organoids. Ann Biomed Eng 49, 1233–1244 (2021). https://doi.org/10.1007/s10439-020-02705-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02705-8

Keywords

Navigation