Skip to main content
Log in

Comparison of in Vascular Bioreactors and In Vivo Models of Degradation and Cellular Response of Mg–Zn–Mn Stents

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Traditional in vitro evaluation criteria of magnesium (Mg)-based stents cannot reflect the degradation process in vivo, due to the interdependence and interference between biodegradable properties and bioenvironment. The current direct and indirect evaluation approaches of in vitro biocompatibility do not have a hydrodynamic environment and vascular biological structure existing in vivo. Herein, we designed a vascular bioreactor to provide an ex vivo culture environment for vessels, which reveals the degradation behavior of Mg–Zn–Mn stent and the effect of its degradation on cells. We reported that rabbit carotid arteries could maintain native morphology and viability in the bioreactor under the best condition within a flow rate of 5.4 mL min−1 and a culture time of one week. With this culture condition, Mg–Zn–Mn stents were implanted into the arteries in the bioreactors and compared with in vivo rabbit models. The arteries maintained cell survival in the bioreactor, but the cell attachment was absent on the stent struts, associated with a fast degradation. Conversely, the stents achieved a rapid and complete endothelialization in vivo for two weeks. This study could provide a correlation and difference of the degradation behavior and cellular response to the degradation of Mg-based stent between ex vivo and in vivo approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aneja, R., C. Yates, S. Josson, L. Chung, and H. Joshi. EM044, a novel noscapinoid induces apoptosis in prostate cancer cells while sparing the normal stroma. Mol. Cancer Ther. 6:32–34, 2007.

    Article  Google Scholar 

  2. Bjork, J. W., and R. T. Tranquillo. Transmural flow bioreactor for vascular tissue engineering. Biotechnol. Bioeng. 104:1197–1206, 2009.

    Article  CAS  Google Scholar 

  3. Doepke, A., J. Kuhlmann, X. Guo, R. T. Voorhees, and W. R. Heineman. A system for characterizing Mg corrosion in aqueous solutions using electrochemical sensors and impedance spectroscopy. Acta Biomater. 9:9211–9219, 2013.

    Article  CAS  Google Scholar 

  4. Echeverry-Rendon, M., J. P. Allain, S. M. Robledo, F. Echeverria, and M. C. Harmsen. Coatings for biodegradable magnesium-based supports for therapy of vascular disease: a general view. Mater. Sci. Eng. C. 102:150–163, 2019.

    Article  CAS  Google Scholar 

  5. Ellis, S. G., D. J. Kereiakes, D. C. Metzger, R. P. Caputo, D. G. Rizik, P. S. Teirstein, M. R. Litt, A. Kini, A. Kabour, S. O. Marx, J. J. Popma, R. M. Greevy, Z. Zhang, C. Simonton, and G. W. Stone. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N. Engl. J. Med. 373:1905–1915, 2015.

    Article  CAS  Google Scholar 

  6. Erbel, R., C. D. Mario, J. Bartunek, J. Bonnier, B. De Bruyne, F. R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Böse, J. Koolen, T. F. Lüscher, N. Weissman, and R. Waksman. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 369:1869–1875, 2007.

    Article  CAS  Google Scholar 

  7. Gu, X., Y. Zheng, Y. Cheng, S. Zhong, and T. Xi. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 30:484–498, 2009.

    Article  CAS  Google Scholar 

  8. Haude, M., R. Erbel, P. Erne, S. Verheye, P. Vermeersch, H. Degen, D. Bose, R. Waksman, N. Weissman, F. Prati, and J. Koolen. Three year clinical and imaging data of the paclitaxel-eluting absorbable magnesium scaffold (Dreams) from the Biosolve-I study. Circulation. 130:A11993–A11993, 2014.

    Google Scholar 

  9. Haude, M., H. Ince, A. Abizaid, R. Toelg, P. A. Lemos, C. Von Birgelen, E. H. Christiansen, W. Wijns, F. J. Neumann, C. Kaiser, E. Eeckhout, S. T. Lim, J. Escaned, H. M. Garcia-Garcia, and R. Waksman. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet. 387:31–39, 2016.

    Article  CAS  Google Scholar 

  10. Haude, M., H. Ince, S. Kische, A. Abizaid, R. Tölg, P. A. Lemos, N. M. Van Mieghem, S. Verheye, C. Von Birgelen, E. H. Christiansen, W. Wijns, H. M. Garcia-Garcia, and V. Waksman. Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. Eurointervention. 13:432–439, 2017.

    Article  Google Scholar 

  11. Huang, A. H., and L. E. Niklason. Engineering biological-based vascular grafts using a pulsatile bioreactor. JOVE. 52:1–7, 2011.

    Google Scholar 

  12. Iqbal, J., Y. Onuma, J. Ormiston, A. Abizaid, R. Waksman, and P. Serruys. Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur. Heart J. 35:765–776, 2013.

    Article  Google Scholar 

  13. Jinnouchi, H., S. Torii, A. Sakamoto, F. D. Kolodgie, R. Virmani, and A. V. Finn. Fully bioresorbable vascular scaffolds: lessons learned and future directions. Nat. Rev. Cardiol. 16:286–304, 2019.

    Article  CAS  Google Scholar 

  14. Kereiakes, D. J., S. G. Ellis, C. Metzger, R. P. Caputo, D. G. Rizik, P. S. Teirstein, M. R. Litt, A. Kini, A. Kabour, S. O. Marx, J. J. Popma, R. M. Greevy, Z. Zhang, C. Simonton, and G. W. Stone. 3-year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds. J. Am. Coll. Cardiol. 70:2852–2862, 2017.

    Article  CAS  Google Scholar 

  15. King, A. D., N. Birbilis, and J. R. Scully. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochim. Acta. 121:394–406, 2014.

    Article  CAS  Google Scholar 

  16. Laukart, J. Fluid-flow handling in bioprocess operations. Genet. Eng. News. 23:1–50, 2003.

    Google Scholar 

  17. Loos, A., R. Rohde, A. Haverich, and S. Barlach. In vitro and in vivo biocompatibility testing of absorbable metal stents. Macromol. Symp. 253:103–108, 2007.

    Article  CAS  Google Scholar 

  18. Ma, J., N. Zhao, L. Betts, and D. H. Zhu. Bio-adaption between magnesium alloy stent and the blood vessel: a review. J. Mater. Sci. Technol. 32:815–826, 2016.

    Article  CAS  Google Scholar 

  19. Marco, I., F. Feyerabend, R. Willumeit-Roemer, and O. Van der Biest. Degradation testing of Mg alloys in Dulbecco’s modified eagle medium: influence of medium sterilization. Mater. Sci. Eng. C. 62:68–78, 2016.

    Article  CAS  Google Scholar 

  20. Mochizuki, A., C. Yahata, and H. Takai. Cytocompatibility of magnesium and AZ31 alloy with three types of cell lines using a direct in vitro method. J. Mater. Sci. Mater. M. 27:145.1–145.10, 2016.

    Article  Google Scholar 

  21. Sivarapatna, A., M. Ghaedi, A. V. Le, J. J. Mendez, Y. Qyang, and L. E. Niklason. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor. Biomaterials. 53:621–633, 2015.

    Article  CAS  Google Scholar 

  22. Waksman, R., R. Pakala, P. K. Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F. O. Tio, E. Wittchow, S. Hartwig, C. Harder, R. Rohde, B. Heublein, A. Andreae, K. H. Waldmann, and A. Haverich. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter. Cardio. Inte. 68:607–617, 2006.

    Article  Google Scholar 

  23. Wang, J., Y. Jang, G. Wan, V. Giridharan, G. L. Song, Z. Xu, Y. Koo, P. Qi, J. Sankar, N. Huang, and Y. Yun. Flow-induced corrosion of absorbable magnesium alloy: in-situ and real-time electrochemical study. Corros. Sci. 104:277–289, 2016.

    Article  CAS  Google Scholar 

  24. Wang, J., C. E. Smith, J. Sankar, Y. Yun, and N. Huang. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. Regen. Biomater. 2:59–69, 2015.

    Article  CAS  Google Scholar 

  25. Wang, J., L. Liu, Y. Wu, M. F. Maitz, Z. Wang, Y. Koo, A. Zhao, J. Sankar, D. Kong, N. Huang, and Y. Yun. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration. Acta Biomater. 50:546–555, 2017.

    Article  CAS  Google Scholar 

  26. Wang, J., V. Giridharan, V. Shanov, Z. Xu, B. Collins, L. White, Y. Jang, J. Sankar, N. Huang, and Y. Yun. Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomater. 10:5213–5223, 2014.

    Article  CAS  Google Scholar 

  27. Yang, L., N. Hort, R. Willumeit, and F. Feyerabend. Effects of corrosion environment and proteins on magnesium corrosion. Corros. Eng. Sci. Techn. 47:335–339, 2012.

    Article  CAS  Google Scholar 

  28. Ye, C., J. Wang, A. Zhao, D. He, M. F. Maitz, N. Zhou, and N. Huang. Atorvastatin eluting coating for magnesium-based stents: control of degradation and endothelialization in a microfluidic assay and in vivo. Adv. Mater. Technol. 5:1–11, 2020.

    Google Scholar 

  29. Zhang, H., W. Deng, X. Wang, S. Wang, J. Ge, and E. Toft. Solely abluminal drug release from coronary stents could possibly improve reendothelialization. Catheter. Cardio. Inte. 88:E59–E66, 2016.

    Article  Google Scholar 

  30. Zhang, J., H. Li, W. Wang, H. Huang, J. Pei, H. Qu, G. Yuan, and Y. Li. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: a 20-month study. Acta Biomater. 69:372–384, 2018.

    Article  CAS  Google Scholar 

  31. Zhao, N., and D. Zhu. Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials. Metallomics. 7:118–128, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (NSFC 81771988 and 81330031), National Key Research and Development Project (YFB 0702500), and Sichuan Science and Technology Project (20GJHZ0268).

Author contributions

NLZ performed most of the bioreactor condition measurements, ex vivo and in vivo experiments, analyzed the data and prepared the manuscript with help from all authors. PL designed and assembled the bioreactor, preliminarily explored the experimental conditions. HQ revised the manuscript. JW is co-corresponding author in this manuscript, and she is the first author’s advisor. In this work, she conceived the idea, supervised the study, and guided the manuscript. ASZ is the corresponding author in this manuscript, and she is the first author’s co-advisor. In this work, she guided the experimental process.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ansha Zhao or Juan Wang.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, N., Li, P., Qiu, H. et al. Comparison of in Vascular Bioreactors and In Vivo Models of Degradation and Cellular Response of Mg–Zn–Mn Stents. Ann Biomed Eng 49, 1551–1560 (2021). https://doi.org/10.1007/s10439-020-02699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02699-3

Keywords

Navigation