Skip to main content
Log in

Slow Decay of Waves in Gravitational Solitons

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider a family of globally stationary (horizonless), asymptotically flat solutions of five-dimensional supergravity. We prove that massless linear scalar waves in such soliton spacetimes cannot have a uniform decay rate faster than inverse logarithmically in time. This slow decay can be attributed to the stable trapping of null geodesics. Our proof uses the construction of quasimodes which are time periodic approximate solutions to the wave equation. The proof is based on previous work to prove an analogous result in \(\text{ Kerr-AdS}_4\) black holes (Holzegel and Smulevici in Anal PDE 7(5):1057–1090, 2014). We remark that this slow decay is suggestive of an instability at the nonlinear level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Alternate proofs for this nonlinear stability result have been obtained in [15, 16].

  2. Supersymmetric spacetimes admit Killing spinors, i.e., non-trivial spinor fields with are covariantly constant with respect to an appropriate connection.

References

  1. Lichnerowicz, A., Gabay, J.: Théories relativistes de la gravitation et de l’électromagnétisme: relativité générale et théories unitaires, (1955)

  2. Gibbons, G. W.: Supergravity vacua and solitons, Duality and supersymmetric theories. Proceedings, Easter School, Newton Institute, Euroconference, Cambridge, UK, April 7-18, 1997, 267–296 (2011)

  3. Kunduri, H.K., Lucietti, J.: No static bubbling spacetimes in higher dimensional Einstein-Maxwell theory. Class. Quant. Grav. 35(5), 054003 (2018)

    Article  ADS  MATH  Google Scholar 

  4. Bena, I., Warner, N.P.: Black holes, black rings and their microstates. Lect. Notes Phys. 755, 1–92 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Mathur, S.D.: The Fuzzball proposal for black holes: an elementary review. Fortsch. Phys. 53, 793–827 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Gibbons, G.W., Warner, N.P.: Global structure of five-dimensional fuzzballs. Class. Quant. Grav. 31, 025016 (2014)

    Article  ADS  MATH  Google Scholar 

  7. Eperon, F.C., Reall, H.S., Santos, J.E.: Instability of supersymmetric microstate geometries, (2016). available at arXiv:1607.06828

  8. Keir, J.: Wave propagation on microstate geometries, (2016). available at arXiv:1609.01733

  9. Keir, J.: Evanescent ergosurface instability, (2018). available at arXiv:1810.03026

  10. Kunduri, H.K., Lucietti, J.: The first law of soliton and black hole mechanics in five dimensions. Class. Quant. Grav. 31(3), 032001 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Breunholder, V., Lucietti, J.: Moduli space of supersymmetric solitons and black holes in five dimensions. Commun. Math. Phys. 365(2), 471–513 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kunduri, H.K., Lucietti, J.: Black hole non-uniqueness via spacetime topology in five dimensions. JHEP 10, 082 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Horowitz, G.T., Kunduri, H.K., Lucietti, J.: Comments on black holes in bubbling spacetimes. JHEP 06, 048 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space (1993)

  15. Lindblad, H., Rodnianski, I.: The Global stability of the Minkowski space-time in harmonic gauge (2004). available at arXiv:math/0411109

  16. Hintz, P., Vasy, A.: A global analysis proof of the stability of Minkowski space and the polyhomogeneity of the metric, (2017). available at arXiv:1711.00195,

  17. Andersson, L., Bäckdahl, T., Blue, P.: Geometry of black hole spacetimes (2016). arXiv:1610.03540

  18. Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations. In: 12th Marcel Grossmann Meeting on General Relativity, pp. 132–189 (2010)

  19. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Clay Math. Proc. 17, 97–205 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Finster, F: Lectures on linear stability of rotating black holes. Domoschool—the International Alpine School in Mathematics and Physics: Einstein Equations: Physical and Mathematical aspects of General Relativity 61–91, (2018)

  21. Finster, F, Kamran, N., Smoller, J., Yau, S.-T.: Linear waves in the Kerr geometry: A Mathematical voyage to black hole physics, (2008). available at arXiv:0801.1423

  22. Regge, T., Wheeler, J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Whiting, B.F.: Mode Stability of the Kerr Black Hole. J. Math. Phys. 30, 1301 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kay, B.S., Wald, R.M.: Linear stability of schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere. Classical Quant Gravity 4(4), 893 (1987)

    Article  ADS  MATH  Google Scholar 

  25. Wald, R.M.: Note on the stability of the schwarzschild metric. J. Math. Phys. 20(6), 1056–1058 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  26. Blue, P., Soffer, A.: Semilinear wave equations on the Schwarzschild manifold. 1. Local decay estimates. Adv. Differ. Equ. 8, 595–614 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Blue, P., Soffer, A.: The Wave equation on the Schwarzschild metric. 2. Local decay for the spin 2 Regge–Wheeler equation. J. Math. Phys. 46, 012502 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Blue, P., Soffer, A.: Errata for ‘Global existence and scattering for the nonlinear Schrodinger equation on Schwarzschild manifolds’, ‘Semilinear wave equations on the Schwarzschild manifold I: local decay estimates’, and ‘The wave equation on the Schwarzschild metric. II. Local decay for the spin 2 Regge Wheeler equation’ (2006). arXiv:gr-qc/0608073

  29. Blue, P., Sterbenz, J.: Uniform decay of local energy and the semi-linear wave equation on schwarzschild space. Commun. Math. Phys. 268, (2), 481–504 (2006–2012)

  30. Dafermos, M., Rodnianski, I.: A Proof of Price’s law for the collapse of a selfgravitating scalar field. Invent. Math. 162, 381–457 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Laba, I., Soffer, A.: Global existence and scattering for the nonlinear Schrodinger equation on Schwarzschild manifolds. 2000-02. available at arXiv:math-ph/0002030

  32. Sbierski, J.: Characterisation of the energy of Gaussian beams on Lorentzian Manifolds—with applications to black hole spacetimes. Anal. Part. Differ. Eq. 8, 1379–1420 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Dafermos, M., Rodnianski, I.: A note on energy currents and decay for the wave equation on a Schwarzschild background (2007). arXiv:0710.0171

  34. Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: Exner, P. (ed.) XVIth International Congress on Mathematical Physics, pp. 421–433. World Scientific, London (2009)

    Google Scholar 

  35. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: the cases \(|a| <<\)M or axisymmetry (2010). arXiv:1010.5132

  36. Shlapentokh-Rothman, Y.: Quantitative mode stability for the wave equation on the kerr spacetime. Ann. Henri Poincare 16, 289–345 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case \(|a| \%3c M\), 2014. available at arXiv:1402.7034

  38. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime (2009). arXiv:0908.2265

  39. Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264, 465–503 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Tataru, D., Tohaneanu, M.: Local energy estimate on Kerr black hole backgrounds, 2008-10. arXiv:0810.5766

  41. Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time asymptotics for the wave equation on extremal Reissner–Nordström backgrounds (2018). arXiv:1807.03802

  42. Aretakis, S.: Horizon instability of extremal black holes. Adv. Theor. Math. Phys. 19, 507–530 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Aretakis, S.: Dynamics of Extremal Black Holes, Springer Briefs in Mathematical Physics, vol. 33. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  44. Lucietti, J., Reall, H.S.: Gravitational instability of an extreme Kerr black hole. Phys. Rev. D 86, 104030 (2012)

    Article  ADS  Google Scholar 

  45. Dafermos, M., Holzegel, G., Rodnianski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations. Acta Math. 222, 1–214 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Andersson, L., Bäckdahl, T., Blue, P., Ma, S.: Stability for linearized gravity on the Kerr spacetime (2019). arXiv:1903.03859

  47. Klainerman, S., Szeftel, J.: Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations, (2017). available at arXiv:1711.07597

  48. Dafermos, M.: The nonlinear stability of the schwarzschild metric without symmetry, December 6: analysis-mathematical physics seminar. Princeton, IAS (2019)

  49. Holzegel, Gustav.: The nonlinear stability of the schwarzschild family of solutions, June 30, 2020, One World PDE seminar

  50. Dafermos, M., Holzegel, G., Rodnianski, I.: Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case \(|a|\ll M\) (2017). arXiv:1711.07944

  51. Häfner, D., Hintz, P., Vasy, A.: Linear stability of slowly rotating Kerr black holes, (2019). available at arXiv:1906.00860,

  52. Bizon, P., Rostworowski, A.: On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett. 107, 031102 (2011)

    Article  ADS  Google Scholar 

  53. Moschidis, G.: A proof of the instability of AdS for the Einstein–null dust system with an inner mirror, (2017). available at arXiv:1704.08681

  54. Moschidis, G.: A proof of the instability of AdS for the Einstein–massless Vlasov system. 201812. available at arXiv:1812.04268

  55. Moschidis, G.: The instability of anti-de sitter spacetime: Recent progress, Black Hole Initiative colloquium (2020)

  56. Holzegel, G.H., Warnick, C.M.: Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes. J. Funct. Anal. 266(4), 2436–2485 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Warnick, C.M.: On quasinormal modes of asymptotically anti-de Sitter black holes. Commun. Math. Phys. 333(2), 959–1035 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Warnick, C.M.: The Massive wave equation in asymptotically AdS spacetimes. Commun. Math. Phys. 321, 85–111 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Holzegel, G., Smulevici, J.: Decay properties of Klein-Gordon fields on Kerr-AdS spacetimes. Commun. Pure Appl. Math. 66, 1751–1802 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Anderson, M.T.: Existence and stability of even dimensional asymptotically de Sitter spaces. Ann. Henri Poincare 6, 801–820 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Friedrich, H.: On the existence of \(n\)-geodesically complete or future complete solutions of einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107(4), 587–609 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Ringström, H.: Future stability of the einstein-non-linear scalar field system. Invention. Math. 173, 123–208 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Rodnianski, I., Speck, J.: The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant, (2009). available at arXiv:0911.5501

  64. Hintz, P., Vasy, A.: The global non-linear stability of the Kerr-de Sitter family of black holes, (2016). available at arXiv:1606.04014

  65. Hintz, P.: Non-linear stability of the Kerr-Newman-de Sitter family of charged black holes, (2016). available at arXiv:1612.04489

  66. Emparan, R., Reall, H.S.: Black holes in higher dimensions. Living Rev. Rel. 11, 6 (2008)

    Article  MATH  Google Scholar 

  67. Dafermos, M., Holzegel, G.: On the nonlinear stability of higher-dimensional triaxial Bianchi IX black holes. Adv. Theor. Math. Phys. 10(4), 503–523 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  68. Holzegel, G.: Stability and decay-rates for the five-dimensional Schwarzschild metric under biaxial perturbations. Adv. Theor. Math. Phys. 14(5), 1245–1372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Laul, P.: Metcalfe, Jason, Localized energy estimates for wave equations on high-dimensional Schwarzschild space-times. Proc. Am. Math. Soc. 140(9), 3247–3262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Laul, P.: Metcalfe, Jason, Tikare, Shreyas, Tohaneanu, Mihai, Localized energy estimates for wave equations on \((1+4)\)-dimensional Myers-Perry space-times. SIAM J. Math. Anal. 47(3), 1933–1957 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  71. Bantilan, H., Figueras, P., Kunesch, M., Panosso Macedo, R.: End point of nonaxisymmetric black hole instabilities in higher dimensions. Phys. Rev. D 100(8), 086014 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  72. Dias, O.J.C., Figueras, P., Monteiro, R., Reall, H.S., Santos, J.E.: An instability of higher-dimensional rotating black holes. JHEP 05, 076 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Figueras, P., Kunesch, M., Lehner, L., Tunyasuvunakool, S.: End point of the ultraspinning instability and violation of cosmic censorship. Phys. Rev. Lett. 118(15), 151103 (2017)

    Article  ADS  Google Scholar 

  74. Emparan, R., Reall, H.S.: A Rotating black ring solution in five-dimensions. Phys. Rev. Lett. 88, 101101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  75. Pomeransky, A.A., Sen’kov, R.A.: Black ring with two angular momenta, (2006). available at arXiv:hep-th/0612005

  76. Figueras, P., Kunesch, M., Tunyasuvunakool, S.: End point of black ring instabilities and the weak cosmic censorship conjecture. Phys. Rev. Lett. 116(7), 071102 (2016)

    Article  ADS  Google Scholar 

  77. Benomio, G.: The Stable Trapping Phenomenon for Black Strings and Black Rings and Its Obstructions on the Decay of Linear Waves (2018). arXiv:1809.07795

  78. Andersson, L., Blue, P., Wyatt, Z., Yau, S.-T.: Global stability of spacetimes with supersymmetric compactifications (2020). arXiv:2006.00824

  79. Wyatt, Z.: The Weak Null Condition and Kaluza-Klein Spacetimes, (2017). available at arXiv:1706.00026

  80. Moschidis, G.: Logarithmic local energy decay for scalar waves on a general class of asymptotically flat spacetimes, (2015). available at arXiv:1509.08495

  81. Holzegel, G.: Smulevici, Jacques, Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes. Anal. PDE 7(5), 1057–1090 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  82. Keir, J.: Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars. Class. Quant. Grav. 33(13), 135009 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Jejjala, V., Madden, O., Ross, S.F., Titchener, G.: Non-supersymmetric smooth geometries and D1-D5-P bound states. Phys. Rev. D 71, 124030 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  84. Friedman, J.L.: Ergosphere instability. Commun. Math. Phys. 63(3), 243–255 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Moschidis, G.: A Proof of Friedman’s Ergosphere Instability for Scalar Waves. Commun. Math. Phys. 358(2), 437–520 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Cardoso, V., Dias, O.J.C., Hovdebo, J.L., Myers, R.C.: Instability of non-supersymmetric smooth geometries. Phys. Rev. D 73, 064031 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  87. Kunduri, H.K., Lucietti, J.: Supersymmetric Black Holes with Lens-Space Topology. Phys. Rev. Lett. 113(21), 211101 (2014)

    Article  ADS  Google Scholar 

  88. Gunasekaran, S., Hussain, U., Kunduri, H.K.: Soliton mechanics. Phys. Rev. D 94(12), 124029 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  89. Compere, G., Copsey, K., de Buyl, S., Mann, R.B.: Solitons in five dimensional minimal supergravity: local charge, exotic ergoregions, and violations of the BPS bound. JHEP 12, 047 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  90. Eperon, F.C.: Geodesics in supersymmetric microstate geometries. Class. Quant. Grav. 34(16), 165003 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Kunduri, H.K., Lucietti, J., Reall, H.S.: Gravitational perturbations of higher dimensional rotating black holes: Tensor perturbations. Phys. Rev. D 74, 084021 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  92. Wu, T.T., Yang, C.N.: Dirac monopole without strings: monopole harmonics. Nucl. Phys. B 107, 365 (1976)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by NSERC Discovery Grant RGPIN-2018-04887. We are thankful to Stefanos Aretakis for helpful comments on a preliminary version of this paper and for discussions during the 2017 Atlantic General Relativity workshop at Memorial University. We also acknowledge helpful communications with Joe Keir on the derivation of certain estimates in Sect.  7. We thank Graham Cox for clarifying various aspects of PDEs and Ivan Booth and James Lucietti for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari K. Kunduri.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunasekaran, S., Kunduri, H.K. Slow Decay of Waves in Gravitational Solitons. Ann. Henri Poincaré 22, 821–872 (2021). https://doi.org/10.1007/s00023-020-01010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-01010-3

Navigation