Skip to main content
Log in

Modelling the Effects of Pest Control with Development of Pesticide Resistance

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we assume that the pest population is divided into susceptible pests and infected pests, and only susceptible pests do harm to crops. Considering the two methods of spraying pesticides and releasing infected pests and natural enemies to control susceptible pests (the former is applied more frequently), and assuming that only susceptible pests develop resistance to pesticides, a pest control model with resistance development is established. By using the basic theory of impulsive differential systems and analytical methods, the sufficient condition for the global attractiveness of the susceptible pest eradication periodic solution is given. Combined with numerical simulations, the effects of spraying frequency of pesticides on critical threshold conditions for eradicating susceptible pests are discussed. The results confirm that it is not that the more frequently the pesticides are sprayed, the better the result of the pest control is. Two control strategies for eradicating susceptible pests are proposed: switching pesticides and releasing natural enemies elastically. Finally, the parameters in the critical threshold are analyzed from the following two aspects: (1) The key factors affecting pest control are determined by parameter sensitivity analyses. The results indicate that the correlation of the critical threshold concerning the killing efficiency rate and the decay rate of pesticides to susceptible pests varies due to the resistance development of susceptible pests. (2) Three-dimensional graphs and contours of susceptible pest eradication critical threshold with two parameters are simulated, and the effects of the main parameters on the critical threshold are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blower, S.M., Dowlatabadi, H. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev., 62: 229–243 (1994)

    Article  Google Scholar 

  2. Fu, J. B., Chen, L. S. Modelling and qualitative analysis of water hyacinth ecological system with two state-dependent impulse controls. Complexity, 2018: 4543976 (2018)

    MATH  Google Scholar 

  3. Gao, S. J., Luo, L., Yan, S. X., Meng, X.Z. Dynamical behavior of a novel impulsive switching model for HLB with seasonal fluctuations. Complexity, 2018: 2953623 (2018)

    MATH  Google Scholar 

  4. Jakel, T., Promkerd, P., Sitthirath, R., Guedant, P., Khoprasert, Y. Biocontrol of rats in an urban environment in Southeast Asia using Sarcocystis singaporensis. Pest Manag. Sci., 75: 2148–2157 (2019)

    Article  Google Scholar 

  5. Jiao, J.J., Chen, L.S. A pest management SI model with periodic biological and chemical control concern. Appl. Math. Comput., 18: 1018–1026 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Jiao, J.J., Chen, L.S. Global attractivity of a stage-structure variable coefficients predator-prey system with time delay and impulsive perturbations on predators. Int. J. Biomath., 1: 197–208 (2008)

    Article  MathSciNet  Google Scholar 

  7. Joop, C.V.L., Herman, J.W.V.R., Susanne, S. Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with the parasitoid Encarsia formosa: how does it work? Biol. Control., 6: 1–10 (1996)

    Article  Google Scholar 

  8. Kang, B.L., Liu, B., Tao, F.M. An integrated pest management model with dose-response effect of pesticides. J. Biol. Syst., 26: 59–86 (2018)

    Article  MathSciNet  Google Scholar 

  9. Lan, G.J., Fu, Y. J., Wei, C.J., Zhang, S.W. A research of pest management SI stochastic model concerning spraying pesticide and releasing natural enemies. Commun. Math. Biol. Neurosci., 2018: 3648 (2018)

    Google Scholar 

  10. Li, C.T., Tang, S.Y. The effects of timing of pulse spraying and releasing periods on dynamics of generalized predator-prey model. Int. J. Biomath., 5: 1250012 (2012)

    Article  MathSciNet  Google Scholar 

  11. Li, Y.K., Teng, Z.D., Wang, K. Dynamic analysis of general integrated pest management model with double impulsive control. Discrete Dyn. Nat. Soc., 2015: 839097 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Liang, J.H., Tang, S.Y., Cheke, R.A. An integrated pest management model with delayed responses to pesticide applications and its threshold dynamics. Nonlinear Anal. Real. World Appl., 13: 2352–2374 (2012)

    Article  MathSciNet  Google Scholar 

  13. Liang, J.H., Tang, S.Y., Nieto, J.J., Cheke, R.A. Analytical methods for detecting pesticide switches with evolution of pesticide resistance. Math. Biosci., 245: 249–257 (2013)

    Article  MathSciNet  Google Scholar 

  14. Liang, J.H., Tang, S.Y., Cheke, R.A., Wu, J.H. Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance. Bull. Math. Biol., 75: 2167–2195 (2013)

    Article  MathSciNet  Google Scholar 

  15. Liang, J.H., Tang, S.Y., Cheke, R.A. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance. Commun. Nonlinear Sci. Numer. Simulat., 36: 327–341 (2016)

    Article  MathSciNet  Google Scholar 

  16. Liang, J.H., Zhu, Y.H., Xiang, C.C., Tang, S.Y. Travelling waves and paradoxical effects in a discrete-time growth-dispersal model. Appl. Math. Model, 59: 132–146 (2018)

    Article  MathSciNet  Google Scholar 

  17. Liang, J.H., Yan, Q., Xiang, C.C., Tang, S.Y. A reaction-diffusion population growth equation with multiple pulse perturbations. Commun. Nonlinear Sci. Numer. Simul., 74: 122–137 (2019)

    Article  MathSciNet  Google Scholar 

  18. Liu, B., Tian, Y., Kang. B.L. Dynamics on a Holling II predator-prey model with state-dependent impulsive control. Int. J. Biomath., 5: 1260006 (2012)

    Article  MathSciNet  Google Scholar 

  19. Liu, B., Zhi, Y., Chen, L.S. The dynamics of a predator-prey model with Ivlevs functional response concerning integrated pest management. Acta. Math. Appl. Sin-E., 20: 133–146 (2004)

    Article  MathSciNet  Google Scholar 

  20. Liu, B., Wang, Y., Kang, B.L. Dynamics on a pest management SI model with control strategies of different frequencies. Nonlinear Anal. Hybri., 12: 66–78 (2014)

    Article  MathSciNet  Google Scholar 

  21. Marino, S., Hogue, LB., Ray, C.J., Kirschner, D. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theoret. Biol., 254: 178–196 (2008)

    Article  MathSciNet  Google Scholar 

  22. Gervassio, N.S., Luna, M.G., Minardi, G., Sanchez, N.E. Assessing inoculative releases of Pseudapanteles dignus (Hymenoptera: Braconidae) for the biological control of Tuta absoluta. Crop. Prot., 124: 104830 (2019)

    Article  Google Scholar 

  23. Nie, L.F., Teng, Z.D., Nieto, J.J. State impulsive control strategies for a two-languages competitive model with bilingualism and interlinguistic similarity. Physica A, 430: 136–147 (2015)

    Article  MathSciNet  Google Scholar 

  24. Pang, G.P., Chen, L.S., Xu, W.J. A stage structure pest management model with impulsive state feedback control. Commun. Nonlinear Sci. Numer. Simulat., 23: 78–88 (2015)

    Article  MathSciNet  Google Scholar 

  25. Panetta, J.C. A Logistic Model of Periodic Chemotherapy. Appl. Math. Lett., 8: 83–86 (1995)

    Article  MathSciNet  Google Scholar 

  26. Rajasingh, J., Murugesupest, R. Pest interaction on sexual reproductive system of forest seed dynamics. Commun. Math. Biol. Neurosci., 2017: 3343 (2017)

    Google Scholar 

  27. Shi, R.Q., Chen, L.S. An impulsive predator-prey model with disease in the prey for integrated pest management. Commun. Nonlinear Sci. Numer. Simul., 15: 421–429 (2010)

    Article  MathSciNet  Google Scholar 

  28. Suandi, D., Wijaya, K.P., Apri, M., et al. A one-locus model describing the evolutionary dynamics of resistance against insecticide in Anopheles mosquitoe. Appl. Math. Comput., 359: 90–106 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Tan, Y.S., Chen, L.S. Modelling approach for biological control of insect pest by releasing infect pest. Chaos Soliton Fract., 39: 304–315 (2009)

    Article  Google Scholar 

  30. Tang, S.Y., Tang, G.Y., Cheke, R.A. Optimum timing for integrated pest management: Modelling rates of pesticide application and natural enemy releases. J. Theoret. Biol., 264: 623–638 (2010)

    Article  MathSciNet  Google Scholar 

  31. Tang, S.Y., Tan, X.W., Yang, J., Liang, J.H. Periodic solution bifurcation and spiking dynamics of impacting predator-prey dynamical model. Int. J. Bifurcat. Chaos, 28: 1850147 (2018)

    Article  MathSciNet  Google Scholar 

  32. Tang, S.Y., Liang, J.H., Xiang, C.C., Xiao, Y.N. A general model of hormesis in biological systems and its application to pest management. J. R. Soc. Interface, 16: 0468 (2019)

    Article  Google Scholar 

  33. Tian, Y., Tang, S.Y., Cheke, R.A. Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases. Math. Model. Anal., 24: 134–154 (2019)

    Article  MathSciNet  Google Scholar 

  34. Wang, L.M., Chen, L.S., Nieto, J.J. The dynamics of an epidemic model for pest control with impulsive effect. Nonlinear Anal-Real, 11: 1374–1386 (2010)

    Article  MathSciNet  Google Scholar 

  35. Wang, S., Huang, Q.D. Bifurcation of nontrivial periodic solutions for a Beddington-DeAngelis interference model with impulsive biological control. Appl. Math. Model, 39: 1470–1479 (2015)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Y.J., Chen, L.S. The periodic model with mutual interference and impulsive effect. Int. J. Biomath., 5: 12600054 (2012)

    MathSciNet  Google Scholar 

  37. Zhao, Z., Pang, L.Y., Song, X.Y. Optimal control of phytoplankton-fish model with the impulsive feedback control. Nonlinear Dynam., 88: 2003–2011 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Liu.

Additional information

This paper is supported by the National Natural Science Foundation of China (No. 11371030), the Natural Science Foundation of Liaoning Province (No. 20170540001) and Liaoning Bai Qian Wan Talents Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Kang, Bl., Tao, Fm. et al. Modelling the Effects of Pest Control with Development of Pesticide Resistance. Acta Math. Appl. Sin. Engl. Ser. 37, 109–125 (2021). https://doi.org/10.1007/s10255-021-0988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-021-0988-x

Keywords

2000 MR Subject Classification

Navigation