Skip to main content
Log in

Finite element analyses of rate-dependent thermo-hydro-mechanical behaviors of clayey soils based on thermodynamics

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Clayey soils in the vicinity of energy geostructures may be exposed to long-term periodic thermal cycles. The creep and consolidation behaviors of the clayey soils can be both rate-dependent and temperature-dependent, and the underlying physical mechanisms are merely investigated theoretically. In this study, based on the theory of thermodynamics, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) program for saturated soils is developed for this purpose. The FE formulation accounts for the combined effect of rate and temperature through the novel concept of granular temperature. Simulations of THM coupled validation cases and a series of experimental observations on the soft Bangkok clay are carried out. The obtained numerical results exhibit good agreement with analytical solutions and laboratory measurements. It is found that three fundamental physical mechanisms contribute to the irreversible thermal contraction observed for normally consolidated and lightly overconsolidated clays under drained thermal cycles: (1) the thermal creep excited by mass exchange from adsorbed water to free water; (2) the mechanical creep induced by confining stresses; and (3) the increase in granular packing caused by the thermal expansion of soil particles. The thermal contraction generally stabilizes within a few thermal cycles, as a result of the noticeable reduction in the thermal creep rate. It is further demonstrated that the transient heat transfer and the heating rate can greatly influence the deformation of clays subjected to thermal cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code availability

The code used in this study is available from the corresponding author upon reasonable request.

References

  1. Abuel-Naga HM, Bergado DT, Bouazza A (2007) Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Eng Geol 89:144–154. https://doi.org/10.1016/j.enggeo.2006.10.002

    Article  Google Scholar 

  2. Abuel-Naga HM, Bergado DT, Bouazza A, Ramana GV (2007) Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling. Can Geotech J 44:942–956. https://doi.org/10.1139/t07-031

    Article  Google Scholar 

  3. Abuel-Naga HM, Bergado DT, Chaiprakaikeow S (2006) Innovative thermal technique for enhancing the performance of prefabricated vertical drain during the preloading process. Geotext Geomembranes 24:359–370. https://doi.org/10.1016/j.geotexmem.2006.04.003

    Article  Google Scholar 

  4. Abuel-Naga HM, Bergado DT, Ramana GV et al (2006) Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature. J Geotech Geoenvironmental Eng 132:902–910. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(902)

    Article  Google Scholar 

  5. Bai B, Chang GY, Li T, Sheng YG (2019) A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials. Mech Mater. https://doi.org/10.1016/j.mechmat.2019.103180

    Article  Google Scholar 

  6. Baldi G, Hueckel T, Pellegrini R (1988) Thermal volume changes of the mineral-water system in low-porosity clay soils. Can Geotech J 25:807–825. https://doi.org/10.1139/t88-089

    Article  Google Scholar 

  7. Barla M, Di Donna A, Santi A (2020) Energy and mechanical aspects on the thermal activation of diaphragm walls for heating and cooling. Renew Energy 147:2654–2663. https://doi.org/10.1016/j.renene.2018.10.074

    Article  Google Scholar 

  8. Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56:81–122. https://doi.org/10.1680/geot.2006.56.2.81

    Article  Google Scholar 

  9. Brochard L, Honório T, Vandamme M et al (2017) Nanoscale origin of the thermo-mechanical behavior of clays. Acta Geotech 12:1261–1279. https://doi.org/10.1007/s11440-017-0596-3

    Article  Google Scholar 

  10. Burghignoli A, Desideri A, Miliziano S (2000) A laboratory study on the thermomechanical behaviour of clayey soils. Can Geotech J 37:764–780. https://doi.org/10.1139/t00-010

    Article  Google Scholar 

  11. Campanella RG, Mitchell JK (1968) Influence of the temperature variations on soil behaviour. J Soil Mech Found Div ASCE 94:709–734

    Article  Google Scholar 

  12. Cekerevac C, Laloui L (2004) Experimental study of thermal effects on the mechanical behaviour of a clay. J Numer Anal Meth Geomech 28:209–228. https://doi.org/10.1002/nag.332

    Article  Google Scholar 

  13. Chen K, Cole J, Conger C et al (2006) Packing grains by thermal cycling. Nature 442:257–257. https://doi.org/10.1038/442257a

    Article  Google Scholar 

  14. Choo J (2018) Large deformation poromechanics with local mass conservation: an enriched Galerkin finite element framework. Int J Numer Methods Eng 116:66–90. https://doi.org/10.1002/nme.5915

    Article  MathSciNet  Google Scholar 

  15. Cui W, Potts DM, Zdravković L et al (2018) An alternative coupled thermo-hydro-mechanical finite element formulation for fully saturated soils. Comput Geotech 94:22–30. https://doi.org/10.1016/j.compgeo.2017.08.011

    Article  Google Scholar 

  16. Cui YJ, Sultan N, Delage P (2000) A thermomechanical model for saturated clays. Can Geotech J 37:607–620. https://doi.org/10.1139/t99-111

    Article  Google Scholar 

  17. Cui W, Tsiampousi A, Potts DM et al (2020) Numerical modeling of time-dependent thermally induced excess pore fluid pressures in a saturated soil. J Geotech Geoenvironmental Eng 146:04020007. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002218

    Article  Google Scholar 

  18. Delage P, Sultan N, Cui YJ (2000) On the thermal behaviour of Boom clay. Can Geotech J 37:343–354. https://doi.org/10.1139/t99-105

    Article  MATH  Google Scholar 

  19. Di Donna A, Laloui L (2015) Numerical analysis of the geotechnical behaviour of energy piles. Int J Numer Anal Methods Geomech 39:861–888. https://doi.org/10.1002/nag.2341

    Article  Google Scholar 

  20. Di Donna A, Laloui L (2015) Response of soil subjected to thermal cyclic loading: experimental and constitutive study. Eng Geol 190:65–76. https://doi.org/10.1016/j.enggeo.2015.03.003

    Article  Google Scholar 

  21. Gatmiri B, Delage P (1997) A formulation of fully coupled thermal-hydraulic-mechanical behaviour of saturated porous media—numerical approach. Int J Numer Anal Methods Geomech 21:199–225. https://doi.org/10.1002/(SICI)1096-9853(199703)21:3%3c199::AID-NAG865%3e3.0.CO;2-M

    Article  MATH  Google Scholar 

  22. Graham J, Tanaka N, Crilly T, Alfaro M (2001) Modified Cam-Clay modelling of temperature effects in clays. Can Geotech J 38:608–621. https://doi.org/10.1139/t00-125

    Article  Google Scholar 

  23. Guvanasen V, Chan T (2000) A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in a fractured rock mass. Int J Rock Mech Min Sci 37:89–106. https://doi.org/10.1016/S1365-1609(99)00095-7

    Article  Google Scholar 

  24. Haff PK (1983) Grain flow as a fluid-mechanical phenomenon. J Fluid Mech 134:401–430. https://doi.org/10.1017/S0022112083003419

    Article  MATH  Google Scholar 

  25. Hiebl M, Maksymiw R (1991) Anomalous temperature dependence of the thermal expansion of proteins. Biopolymers 31:161–167. https://doi.org/10.1002/bip.360310204

    Article  Google Scholar 

  26. Hueckel T, Pellegrini R (1992) Effective stress and water-pressure in saturated clays during heating-cooling cycles. Can Geotech J 29:1095–1102. https://doi.org/10.1139/t92-126

    Article  Google Scholar 

  27. Jenkins JT, Savage SB (1983) A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J Fluid Mech 130:187–202

    Article  Google Scholar 

  28. Jiang Y, Liu M (2007) From elasticity to hypoplasticity: Dynamics of granular solids. Phys Rev Lett 99:5–8. https://doi.org/10.1103/PhysRevLett.99.105501

    Article  Google Scholar 

  29. Jiang Y, Liu M (2009) Granular solid hydrodynamics. Granul Matter 11:139–156. https://doi.org/10.1007/s10035-009-0137-3

    Article  MATH  Google Scholar 

  30. Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  31. Kongkitkul W, Kawabe S, Tatsuoka F, Hirakawa D (2011) A simple pneumatic loading system controlling stress and strain rates for one-dimensional compression of clay. Soils Found 51:11–30. https://doi.org/10.3208/sandf.51.11

    Article  Google Scholar 

  32. Laloui L (2001) Thermo-mechanical behaviour of soils. Environ Geomech 5:809–843. https://doi.org/10.1080/12795119.2001.9692328

    Article  Google Scholar 

  33. Laloui L, Cekerevac C (2008) Non-isothermal plasticity model for cyclic behaviour of soils. Int J Numer Anal Methods Geomech 32:189–213. https://doi.org/10.1002/nag

    Article  MATH  Google Scholar 

  34. Laloui L, François B (2009) ACMEG-T: Ssoil thermoplasticity model. J Eng Mech 135:932–944. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000011

    Article  Google Scholar 

  35. Li Y, Dijkstra J, Karstunen M (2018) Thermomechanical creep in sensitive clays. J Geotech Geoenvironmental Eng 144:1–11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001965

    Article  Google Scholar 

  36. Li C, Kong G, Liu H, Abuel-Naga H (2019) Effect of temperature on behaviour of red clay–structure interface. Can Geotech J 56:126–134. https://doi.org/10.1139/cgj-2017-0310

    Article  Google Scholar 

  37. Li C, Laloui L (2016) Coupled multiphase thermo-hydro-mechanical analysis of supercritical CO2 injection: benchmark for the In Salah surface uplift problem. Int J Greenh Gas Control 51:394–408. https://doi.org/10.1016/j.ijggc.2016.05.025

    Article  Google Scholar 

  38. Ma QJ, Ng CWW, Mašín D, Zhou C (2017) An approach for modelling volume change of fine-grained soil subjected to thermal cycles. Can Geotech J 54:896–901. https://doi.org/10.1139/cgj-2016-0459

    Article  Google Scholar 

  39. Ma J, Zhao G, Khalili N (2016) A fully coupled flow deformation model for elasto-plastic damage analysis in saturated fractured porous media. Int J Plast 76:29–50. https://doi.org/10.1016/j.ijplas.2015.07.011

    Article  Google Scholar 

  40. Modaressi H, Laloui L (1997) A thermo-viscoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 21:313–335. https://doi.org/10.1002/(sici)1096-9853(199705)21:5%3c313::aid-nag872%3e3.3.co;2-x

    Article  MATH  Google Scholar 

  41. Morinl R, Silva A (1984) The effects of high pressure and high temperature on some physical properties of ocean sediments. J Geophys Res 89:511–526. https://doi.org/10.1029/JB089iB01p00511

    Article  Google Scholar 

  42. Murphy KD, McCartney JS, Henry KS (2015) Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotech 10:179–195. https://doi.org/10.1007/s11440-013-0298-4

    Article  Google Scholar 

  43. Ng CWW, Shi C, Gunawan A et al (2014) Centrifuge modelling of installation effects on helical anchor performance in sand. Can Geotech J 13:785–791. https://doi.org/10.1139/cgj-2014-0301

    Article  Google Scholar 

  44. Ochsner K (2008) Carbon dioxide heat pipe in conjunction with a ground source heat pump (GSHP). Appl Therm Eng 28:2077–2082. https://doi.org/10.1016/j.applthermaleng.2008.04.023

    Article  Google Scholar 

  45. Osipov VIV (2012) Nanofilms of adsorbed water in clay: mechanism of formation and properties. Water Resour 39:709–721. https://doi.org/10.1134/S009780781207010X

    Article  Google Scholar 

  46. Plum RL, Esrig MI (1969) Some temperature effects on soil compressibility and pore water pressures. 48th Annu Meet Highw Res Board. Spec Rep 103:231–242

    Google Scholar 

  47. Qiao Y, Ding W (2017) ACMEG-TVP: A thermoviscoplastic constitutive model for geomaterials. Comput Geotech 81:98–111. https://doi.org/10.1016/j.compgeo.2016.08.003

    Article  Google Scholar 

  48. Rui Y, Soga K (2019) Thermo-hydro-mechanical coupling analysis of a thermal pile. Proc Inst Civ Eng - Geotech Eng 172:155–173. https://doi.org/10.1680/jgeen.16.00133

    Article  Google Scholar 

  49. Sloan W (1987) Substepping schemes for the numerical integration of elastoplastic stress–strain relations. Int J Numer Methods Eng 24:893–911. https://doi.org/10.1002/nme.1620240505

    Article  MATH  Google Scholar 

  50. Song Z, Hao Y, Liu H (2020) Analytical study of the thermo-osmosis effect in porothermoelastic responses of saturated porous media under axisymmetric thermal loadings. Comput Geotech 123:103576. https://doi.org/10.1016/j.compgeo.2020.103576

    Article  Google Scholar 

  51. Stewart MA, McCartney JS (2014) Centrifuge modeling of soil-structure interaction in energy foundations. J Geotech Geoenvironmental Eng 140:04013044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001061

    Article  Google Scholar 

  52. Suvorov AP, Selvadurai APS (2009) THM processes in a fluid-saturated poroelastic geomaterial: comparison of analytical results and computational estimates. In: Diederichs M, Grasselli G (eds) Proceedings of the 3rd CANUS Rock Mechanics Symposium. p 4120

  53. Tamizdoust MM, Ghasemi-Fare O (2020) A fully coupled thermo-poro-mechanical finite element analysis to predict the thermal pressurization and thermally induced pore fluid flow in soil media. Comput Geotech 117:103250. https://doi.org/10.1016/j.compgeo.2019.103250

    Article  Google Scholar 

  54. Towhata I, Kuntiwattanaku P, Seko I, Ohishi K (1993) Volume change of clays induced by heating as observed in consolidation tests. Soils Found 33:170–183. https://doi.org/10.1248/cpb.37.3229

    Article  Google Scholar 

  55. Tsutsumi A, Tanaka H (2012) Combined effects of strain rate and temperature on consolidation behavior of clayey soils. Soils Found 52:207–215. https://doi.org/10.1016/j.sandf.2012.02.001

    Article  Google Scholar 

  56. Villar MV, Lloret A (2004) Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Appl Clay Sci 26:337–350. https://doi.org/10.1016/j.clay.2003.12.026

    Article  Google Scholar 

  57. Wang H (2018) Research on multi-scale and multi-field thermodynamic constitutive model and its finite element implementation for saturated geomaterials. Tsinghua University, Beijing

    Google Scholar 

  58. Wang H, Cheng X (2017) A thermodynamic model for rate-dependent geomaterials. In: Ferrari A, Laloui L (eds) Advances in laboratory testing and modelling of soils and shales (ATMSS). Springer International Publishing, Berlin , pp 471–478

    Chapter  Google Scholar 

  59. Wang J, He H, Li M et al (2020) A review and evaluation of thermal conductivity models of saturated soils. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2020.1771315

    Article  Google Scholar 

  60. Wang K, Wang L, Hong Y (2020) Modelling thermo-elastic–viscoplastic behaviour of marine clay. Acta Geotech 15:2415–2431. https://doi.org/10.1007/s11440-020-00917-9

    Article  Google Scholar 

  61. Wu D, Liu H, Kong G, Ng CWW (2020) Interactions of an energy pile with several traditional piles in a row. J Geotech Geoenvironmental Eng 146:1–9. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002224

    Article  Google Scholar 

  62. Xu S, Scherer GW, Mahadevan TS, Garofalini SH (2009) Thermal expansion of confined water. Langmuir 25:5076–5083. https://doi.org/10.1021/la804061p

    Article  Google Scholar 

  63. Yashima A, Leroueil S, Oka F, Guntoro I (1998) Modelling temperature and strain rate dependent behavior of clays: one dimensional consolidation. Soils Found 38:63–73. https://doi.org/10.3208/sandf.38.2_63

    Article  Google Scholar 

  64. You S, Cheng X, Guo H, Yao Z (2014) In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers. Energy Build 79:23–31. https://doi.org/10.1016/j.enbuild.2014.04.021

    Article  Google Scholar 

  65. Zhang Z, Cheng X (2015) A thermodynamic constitutive model for undrained monotonic and cyclic shear behavior of saturated soils. Acta Geotech 10:781–796. https://doi.org/10.1007/s11440-015-0389-5

    Article  Google Scholar 

  66. Zhang ZC, Cheng XH (2016) A thermo-mechanical coupled constitutive model for clay based on extended granular solid hydrodynamics. Comput Geotech 80:373–382. https://doi.org/10.1016/j.compgeo.2016.05.010

    Article  Google Scholar 

  67. Zhang Z, Cheng X (2017) A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application. Int J Numer Anal Methods Geomech 41:527–554. https://doi.org/10.1002/nag.2569A

    Article  Google Scholar 

  68. Zhu JG, Yin JH, Luk ST (1999) Time-dependent stress-strain behavior of soft Hong Kong marine deposits. Geotech Test J 22:118–126. https://doi.org/10.1520/GTJ11270J

    Article  Google Scholar 

  69. Zymnis DM, Whittle AJ, Cheng X (2015) TTS model for thermo-mechanical behavior of clay. In: Proceedings of the XVI ECSMGE. pp 4109–4114

  70. Zymnis DM, Whittle AJ, Cheng X (2019) Simulation of long-term thermo-mechanical response of clay using an advanced constitutive model. Acta Geotech 14:295–311. https://doi.org/10.1007/s11440-018-0726-6

    Article  Google Scholar 

  71. Zymnis DM, Whittle AJ, Germaine JT (2018) Measurement of temperature-dependent bound water in clays. Geotech Test J 42:232–244. https://doi.org/10.1520/GTJ20170012

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the 7th Framework Program for Research of European Commission (Grant No. 612665) and National Science Foundation of China (NSFC, Grant No. 51778338). The authors are grateful to Professor Andrew Whittle, Massachusetts Institute of Technology, USA, for the useful discussions and suggestions on the research topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chu.

Ethics declarations

Availability of data and material

The data used to support the findings of this study are available from the corresponding author upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Detailed expressions of the matrices for the THM coupled FE formulation

$$ \left[ {D_{\varepsilon } } \right] = \left[ {\begin{array}{*{20}c} {\frac{{\partial \sigma_{r} ^{\prime}}}{{\partial \varepsilon_{r}^{e} }}} & {\frac{{\partial \sigma_{r} ^{\prime}}}{{\partial \varepsilon_{\theta }^{e} }}} & {\frac{{\partial \sigma_{r} ^{\prime}}}{{\partial \varepsilon_{z}^{e} }}} & {\frac{{\partial \sigma_{r} ^{\prime}}}{{\partial \varepsilon_{rz}^{e} }}} \\ {\frac{{\partial \sigma_{\theta } ^{\prime}}}{{\partial \varepsilon_{r}^{e} }}} & {\frac{{\partial \sigma_{\theta } ^{\prime}}}{{\partial \varepsilon_{\theta }^{e} }}} & {\frac{{\partial \sigma_{\theta } ^{\prime}}}{{\partial \varepsilon_{z}^{e} }}} & {\frac{{\partial \sigma_{\theta } ^{\prime}}}{{\partial \varepsilon_{rz}^{e} }}} \\ {\frac{{\partial \sigma_{z} ^{\prime}}}{{\partial \varepsilon_{r}^{e} }}} & {\frac{{\partial \sigma_{z} ^{\prime}}}{{\partial \varepsilon_{\theta }^{e} }}} & {\frac{{\partial \sigma_{z} ^{\prime}}}{{\partial \varepsilon_{z}^{e} }}} & {\frac{{\partial \sigma_{z} ^{\prime}}}{{\partial \varepsilon_{rz}^{e} }}} \\ {\frac{{\partial \tau_{rz} ^{\prime}}}{{\partial \varepsilon_{r}^{e} }}} & {\frac{{\partial \tau_{rz} ^{\prime}}}{{\partial \varepsilon_{\theta }^{e} }}} & {\frac{{\partial \tau_{rz} ^{\prime}}}{{\partial \varepsilon_{z}^{e} }}} & {\frac{{\partial \tau_{rz} ^{\prime}}}{{\partial \varepsilon_{rz}^{e} }}} \\ \end{array} } \right] $$
$$ \left[ {D_{T} } \right] = \left[ {\begin{array}{*{20}c} {\frac{{\partial \sigma_{r} ^{\prime}}}{\partial T}} & {\frac{{\partial \sigma_{\theta } ^{\prime}}}{\partial T}} & {\frac{{\partial \sigma_{z} ^{\prime}}}{\partial T}} & {\frac{{\partial \tau_{rz} ^{\prime}}}{\partial T}} \\ \end{array} } \right]^{T} $$
$$ \left[ {D_{\rho } } \right] = \rho_{d} \left[ {\begin{array}{*{20}c} {\frac{{\partial \sigma_{r} ^{\prime}}}{{\partial \rho_{d} }}} & {\frac{{\partial \sigma_{r} ^{\prime}}}{{\partial \rho_{d} }}} & {\frac{{\partial \sigma_{r} ^{\prime}}}{{\partial \rho_{d} }}} & 0 \\ {\frac{{\partial \sigma_{\theta } ^{\prime}}}{{\partial \rho_{d} }}} & {\frac{{\partial \sigma_{\theta } ^{\prime}}}{{\partial \rho_{d} }}} & {\frac{{\partial \sigma_{\theta } ^{\prime}}}{{\partial \rho_{d} }}} & 0 \\ {\frac{{\partial \sigma_{z} ^{\prime}}}{{\partial \rho_{d} }}} & {\frac{{\partial \sigma_{z} ^{\prime}}}{{\partial \rho_{d} }}} & {\frac{{\partial \sigma_{z} ^{\prime}}}{{\partial \rho_{d} }}} & 0 \\ {\frac{{\partial \tau_{rz} ^{\prime}}}{{\partial \rho_{d} }}} & {\frac{{\partial \tau_{rz} ^{\prime}}}{{\partial \rho_{d} }}} & {\frac{{\partial \tau_{rz} ^{\prime}}}{{\partial \rho_{d} }}} & 0 \\ \end{array} } \right] $$
$$ \left\{ {\dot{Y}} \right\} = \left[ {\begin{array}{*{20}c} {(T_{g} )^{0.5} \varepsilon_{r}^{e} + (m_{1} - \frac{1}{3})(T_{g} )^{0.5} \varepsilon_{v}^{e} } \\ {(T_{g} )^{0.5} \varepsilon_{\theta }^{e} + (m_{1} - \frac{1}{3})(T_{g} )^{0.5} \varepsilon_{v}^{e} } \\ {(T_{g} )^{0.5} \varepsilon_{z}^{e} + (m_{1} - \frac{1}{3})(T_{g} )^{0.5} \varepsilon_{v}^{e} } \\ {(T_{g} )^{0.5} \gamma_{rz}^{e} } \\ \end{array} } \right] $$
$$ [K] = \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {B^{T} ([D_{\varepsilon } ] + [D_{\rho } ])Brdrdz \, }} $$
$$ \left[ {K_{p} } \right] = \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {B^{T} \left\{ m \right\}N_{p} rdrdz \, }} $$
$$ \left[ {K_{T} } \right] = \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {B^{T} [D_{T} ]N_{T} rdrdz \, }} $$
$$ \left\{ F \right\} = \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {\left( { - B^{T} [D_{\varepsilon } ]\left\{ {\dot{Y}} \right\} + N^{T} \left\{ {\dot{g}} \right\}[\rho_{d} + \rho_{l} (1 - \frac{{\rho_{d} }}{{\rho_{s} }})]} \right)rdrdz}} + \sum\limits_{{S_{\sigma }^{e} }} {\int\limits_{{S_{\sigma }^{e} }} {N^{T} \left\{ {\dot{s}} \right\}rdS} } $$
$$ [H_{\varepsilon } ] = \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {\left( {A_{1} N_{p}^{T} m^{T} B} \right)rdrdz \, }} $$
$$ [H] = \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {\left( {A_{2} N_{p}^{T} N_{T} } \right)rdrdz \, }} $$
$$ [H_{p} ] = \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {\left( {\frac{\kappa }{\mu }A_{1} (\nabla N_{p} )^{T} \nabla N_{p} } \right)rdrdz \, }} $$
$$ [H_{T} ] = \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {\left[ {\frac{\kappa }{\mu }\beta_{l} \left( {N_{p}^{T} \left\{ p \right\}^{T} (\nabla N_{p} )^{T} \nabla N_{T} - \rho_{l} N_{p}^{T} \left\{ g \right\}^{T} \nabla N_{T} } \right)} \right]rdrdz \, }} $$
$$ \left\{ {F_{p} } \right\} = \sum\limits_{{S_{p}^{e} }} {\int\limits_{{S_{p}^{e} }} {\left[ {A_{1} N_{p}^{T} \cdot (\tilde{v}_{r} + \tilde{v}_{z} )} \right] \, rdS} } + \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {\left[ {\frac{\kappa }{\mu }A_{1} \rho_{l} (\nabla N_{p} )^{T} \left\{ g \right\}} \right]rdrdz \, }} $$
$$ [R] = \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {\left( {\sum {\rho_{\alpha } \varphi_{\alpha } c_{\alpha } } } \right)N_{T}^{T} N_{T} rdrdz \, }} $$
$$ [R_{T} ] = \sum\limits_{{\Delta^{e} }} {\iint\limits_{{\Delta^{e} }} {\left( {\lambda \left( {\nabla N_{T} } \right)^{T} \nabla N_{T} + \rho_{l} \varphi_{l} c_{l} \frac{\kappa }{\mu }\left[ {N_{T}^{T} \left\{ p \right\}^{T} \left( {\nabla N_{p} } \right)^{T} \nabla N_{T} - \rho_{l} N_{T}^{T} \left\{ g \right\}^{T} \nabla N_{T} } \right]} \right)rdrdz \, }} $$
$$ \left\{ {F_{T} } \right\} = - \sum\limits_{{S_{T}^{e} }} {\int\limits_{{S_{T}^{e} }} {\left[ {N_{T}^{T} \cdot (\tilde{\eta }_{r} + \tilde{\eta }_{z} )} \right]rdS} } $$

Appendix 2: THM processes in saturated linear elastic geomaterial

The one-dimensional THM processes in this case study was first proposed by Suvorov and Selvadurai [52] for analyzing the quasi-static response of saturated linear elastic geomaterials subjected to heating. The case serves as a valuable validation of numerical solutions because a rigorous analytical solution has been provided [52].

Consider a one-dimensional elastic soil column of 10 m in height, as shown in Fig. 

Fig. 12
figure 12

FE mesh and boundary conditions of the THM processes in the saturated elastic soil column

12. At time t = 0, the column is instantaneously heated from 0 to 100 °C without drainage. During the time ,the bottom end is fixed while the top end has no displacement limit. Accordingly, excess pore pressure builds up within the soil column and the top end elevates due to thermal expansion. Once the entire column reaches 100 °C, the pore pressure and the temperature at the top end are immediately reduced to zero and a constant compressive stress of 10 MPa is applied to the top. Temperature, pore pressure and displacement are observed within the next 365 days.

Figure 12 shows the geometry, the FE mesh and the boundary conditions of the problem. Table

Table 2 Soil properties for the validation case in "Appendix 2"

2 lists the soil properties used in the analytical solution by Suvorov and Selvadurai [52] and the way to convert the properties into the FE code. The heat convection is not considered in this case. Degradation from the extended GSH model to a linear elastic model can be completed using the following equation, provided that all other hyperelastic and plastic constitutive parameters are set to zero

$$ \left\{ \begin{gathered} B_{0} = \frac{5}{12}\frac{E}{(1 - 2\nu )} \hfill \\ \xi = \frac{E}{{2B_{0} (1 + \nu )}} \hfill \\ \end{gathered} \right. $$
(20)

where E and v are the Young’s modulus and the Poisson’s ratio.

Figure 

Fig. 13
figure 13

Comparison between the numerical and the analytical solution for the evolution of a temperature, b pore pressure and c displacement

13 shows the evolution of temperature, pore pressure and displacement with time and depth in 365 days. A perfect match is found between the FE calculation and the analytical solution. Since the heat convection is not considered, the temperature evolution in Fig. 13a is totally controlled by the effective specific heat and the thermal conductivity according to Eq. (17). In Fig. 13b, the initial excess pore pressure of 36.3 MPa is induced by the elevated temperature (which contributes to 26.3 MPa) and the 10 MPa compressive stress. At Day 100, not only the positive pore pressure induced by heating has been dissipated, but a negative pore pressure has been generated. This is because the thermal expansion coefficient of the liquid phase is set to zero while that of the solid phase isn’t. During the cooling stage, the contraction of solid phase adds a tensile force to the liquid phase which results in the negative pore pressure. Figure 13c shows the displacement along the elastic soil column. The initial displacement is caused by the thermal expansion. The final displacement after temperature returns to zero depends on the relationship between the soil stiffness and the compressive stress applied. In general, the simulation proved the accuracy of the FE code in dealing with THM coupled elastic problems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cheng, X. & Chu, J. Finite element analyses of rate-dependent thermo-hydro-mechanical behaviors of clayey soils based on thermodynamics. Acta Geotech. 16, 1829–1847 (2021). https://doi.org/10.1007/s11440-020-01125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01125-1

Keywords

Navigation