Skip to main content
Log in

A novel multi-scale large deformation approach for modelling of granular collapse

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Collapse of granular material is usually accompanied by long run-out granular flows in natural hazards, e.g. rock/debris flow and snow avalanches. This paper presents a novel multi-scale approach for modelling granular column collapse with large deformation. This approach employs the smoothed particle hydrodynamics (SPH) method to solve large deformation boundary value problems, while using a micromechanical model to derive the nonlinear material response required by the SPH method. After examining the effect of initial cell size, the proposed approach is subsequently applied to simulate the flow of granular column in a rectangular channel at a low water content by varying the initial aspect ratio. The numerical results show good agreement with various experimental observations on both collapse process and final deposit morphology. Furthermore, the meso-scale behaviour is also captured owing to the advantages of the micromechanical model. Finally, it was demonstrated that the novel multi-scale approach is helpful in improving the understanding of granular collapse and should be an effective computational tool for the analysis of real-scale granular flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Brakke KA (1992) The surface evolver. Exp Math 1(2):141–165

    Article  MathSciNet  MATH  Google Scholar 

  2. Brezzi L, Gabrieli F, Cola S (2020) Collapse of granular-cohesive soil mixtures on a horizontal plane. Acta Geotech 15(3):695–714

    Article  Google Scholar 

  3. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537–1570

    Article  MATH  Google Scholar 

  4. Cambou B, Dubujet P, Emeriault F, Sidoroff F (1995) Homogenization for granular materials. Eur J Mech A Solids 14(2):255–276

    MathSciNet  MATH  Google Scholar 

  5. Chen W-B, Liu K, Feng W-Q, Borana L, Yin J-H (2019) Influence of matric suction on nonlinear time-dependent compression behavior of a granular fill material. Acta Geotech 15:1–19

    Google Scholar 

  6. Chen W-B, Liu K, Yin Z-Y, Yin J-H (2020) Crushing and flooding effects on one-dimensional time-dependent behaviors of a granular soil. Int J Geomech 20(2):04019156

    Article  Google Scholar 

  7. Christoffersen J, Mehrabadi MM, Nemat-Nasser S (1981) A micromechanical description of granular material behavior. J Appl Mech 48(2):339–344

    Article  MATH  Google Scholar 

  8. Crosta G, Imposimato S, Roddeman D (2009) Numerical modeling of 2-d granular step collapse on erodible and nonerodible surface. J Geophys Res: Earth Surf 114(F3):F03020

    Google Scholar 

  9. De Saxcé G, Fortin J, Millet O (2004) About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor. Mech Mater 36(12):1175–1184

    Article  Google Scholar 

  10. Fávero Neto AH, Askarinejad A, Springman SM, Borja RI (2020) Simulation of debris flow on an instrumented test slope using an updated Lagrangian continuum particle method. Acta Geotech 15:2757–2777

    Article  Google Scholar 

  11. Fávero Neto AH, Borja RI (2018) Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity. Acta Geotech 13(5):1027–1040

    Article  Google Scholar 

  12. Fern EJ, Soga K (2017) Granular column collapse of wet sand. Procedia Eng 175:14–20

    Article  Google Scholar 

  13. Gabrieli F, Artoni R, Santomaso A, Cola S (2013) Discrete particle simulations and experiments on the collapse of wet granular columns. Phys Fluids 25(10):103303

    Article  Google Scholar 

  14. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  MATH  Google Scholar 

  15. Green AE, Naghdi PM (1964) A general theory of an elastic–plastic continuum. Technical report, California University Berkeley Institute of Engineering Research

  16. Han K, Ju JWW, Kong H, Wang M (2019) Functional catastrophe analysis of progressive failures for deep tunnel roof considering variable dilatancy angle and detaching velocity. Rock Mech Rock Eng 52(10):3987–3997

    Article  Google Scholar 

  17. Hungr O, Evans S (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116(9–10):1240–1252

    Article  Google Scholar 

  18. Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  19. Jianbo F, Yuxin J, Xiaohui S, Xi C (2020) Experimental investigation on granular flow past baffle piles and numerical simulation using a \(\mu \)(I)-rheology-based approach. Powder Technol 359:36–46

    Article  Google Scholar 

  20. Jin YF, Yuan WH, Yin ZY, Cheng YM (2020) An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering. Int J Numer Anal Methods Geomech 44(7):923–941

    Article  Google Scholar 

  21. Jin Z, Yin Z-Y, Kotronis P, Jin Y-F (2019a) Numerical investigation on evolving failure of Caisson foundation in sand using the combined Lagrangian-SPH method. Mar Georesour Geotechnol 37(1):23–35

    Article  Google Scholar 

  22. Jin Z, Yin Z-Y, Kotronis P, Li Z (2019b) Advanced numerical modelling of caisson foundations in sand to investigate the failure envelope in the HMV space. Ocean Eng 190:106394

    Article  Google Scholar 

  23. Kermani E, Qiu T (2020) Simulation of quasi-static axisymmetric collapse of granular columns using smoothed particle hydrodynamics and discrete element methods. Acta Geotech 15(2):423–437

    Article  Google Scholar 

  24. La Ragione L, Prantil VC, Sharma I (2008) A simplified model for inelastic behavior of an idealized granular material. Int J Plast 24(1):168–189

    Article  MATH  Google Scholar 

  25. Lajeunesse E, Monnier J, Homsy G (2005) Granular slumping on a horizontal surface. Phys Fluids 17(10):103302

    Article  MATH  Google Scholar 

  26. Li H, Deng J, Yin J, Zhu J (2020) Modelling the shearing behaviour of joints using an improved shear box genesis approach in particle flow code (2D) and its validation. Geomech Geophys Geo-Energy Geo-Resour 6(1):1–15

    Google Scholar 

  27. Liang W, Zhao J (2019) Multiscale modeling of large deformation in geomechanics. Int J Numer Anal Methods Geomech 43(5):1080–1114

    Article  Google Scholar 

  28. Love AEH (2013) A treatise on the mathematical theory of elasticity, vol 1. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Lube G, Huppert HE, Sparks RSJ, Freundt A (2005) Collapses of two-dimensional granular columns. Phys Rev E 72(4):041301

    Article  Google Scholar 

  30. Lube G, Huppert HE, Sparks RSJ, Hallworth MA (2004) Axisymmetric collapses of granular columns. J Fluid Mech 508:175

    Article  MATH  Google Scholar 

  31. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  32. Mehrabadi MM, Nemat-Nasser S, Oda M (1982) On statistical description of stress and fabric in granular materials. Int J Numer Anal Methods Geomech 6(1):95–108

    Article  MathSciNet  MATH  Google Scholar 

  33. Molenkamp F, Nazemi AH (2003) Interactions between two rough spheres, water bridge and water vapour. Geotechnique 53(2):255–264

    Article  Google Scholar 

  34. Monaghan JJ (1988) An introduction to SPH. Comput. Phys. Comm. 48:89–96

    Article  MATH  Google Scholar 

  35. Nguyen CT, Nguyen CT, Bui HH, Nguyen GD, Fukagawa R (2017) A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation. Landslides 14(1):69–81

    Article  Google Scholar 

  36. Nicot F, Darve F (2011) The H-microdirectional model: accounting for a mesoscopic scale. Mech Mater 43(12):918–929

    Article  Google Scholar 

  37. Nicot, F., Darve, F., Group, R (2005) A multi-scale approach to granular materials. Mech Mater 37(9):980–1006

    Google Scholar 

  38. Peng C, Wang S, Wu W, Yu H-S, Wang C, Chen J-Y (2019) Loquat: an open-source GPU-accelerated SPH solver for geotechnical modeling. Acta Geotech 14(5):1269–1287

    Article  Google Scholar 

  39. Peng C, Wu W, Yu H-S, Wang C (2015) A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotech 10(6):703–717

    Article  Google Scholar 

  40. Phillips JC, Hogg AJ, Kerswell RR, Thomas NH (2006) Enhanced mobility of granular mixtures of fine and coarse particles. Earth Planet Sci Lett 246(3–4):466–480

    Article  Google Scholar 

  41. Rondon L, Pouliquen O, Aussillous P (2011) Granular collapse in a fluid: role of the initial volume fraction. Phys Fluids 23(7):073301

    Article  Google Scholar 

  42. Shreve RL (1968) Leakage and fluidization in air-layer lubricated avalanches. Geol Soc Am Bull 79(5):653–658

    Article  Google Scholar 

  43. Sołowski W, Sloan S (2015) Evaluation of material point method for use in geotechnics. Int J Numer Anal Methods Geomech 39(7):685–701

    Article  Google Scholar 

  44. Staron L, Hinch E (2005) Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J Fluid Mech 545:1–27

    Article  MATH  Google Scholar 

  45. Systèmes D (2014) Abaqus 6.14 analysis user manual

  46. Tan D-Y, Yin J-H, Feng W-Q, Zhu Z-H, Qin J-Q, Chen W-B (2019) New simple method for calculating impact force on flexible barrier considering partial muddy debris flow passing through. J Geotech Geoenviron Eng 145(9):04019051

    Article  Google Scholar 

  47. Tan D-Y, Yin J-H, Qin J-Q, Zhu Z-H, Feng W-Q (2020) Experimental study on impact and deposition behaviours of multiple surges of channelized debris flow on a flexible barrier. Landslides 17:1–13

    Article  Google Scholar 

  48. Utili S, Zhao T, Houlsby G (2015) 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Eng Geol 186:3–16

    Article  Google Scholar 

  49. Wang G, Riaz A, Balachandran B (2019) Smooth particle hydrodynamics studies of wet granular column collapses. Acta Geotech 15:1–13

    Google Scholar 

  50. Wu Z-X, Ji H, Han J, Yu C (2019) Numerical modelling of granular column collapse using coupled Eulerian–Lagrangian technique with critical state soil model. Eng Comput 36:2480–2504

    Article  Google Scholar 

  51. Xiong H, Nicot F, Yin Z (2017) A three-dimensional micromechanically based model. Int J Numer Anal Methods Geomech 41(17):1669–1686

    Article  Google Scholar 

  52. Xiong H, Nicot F, Yin Z (2019a) From micro scale to boundary value problem: using a micromechanically based model. Acta Geotech 14(5):1307–1323

    Article  Google Scholar 

  53. Xiong H, Yin Z-Y, Nicot F (2019b) A multiscale work-analysis approach for geotechnical structures. Int J Numer Anal Meth Geomech 43(6):1230–1250

    Article  Google Scholar 

  54. Xiong H, Yin Z-Y, Nicot F (2020) Programming a micro-mechanical model of granular materials in Julia. Adv Eng Softw 145:102816

    Article  Google Scholar 

  55. Yin Z-Y, Jin Z, Kotronis P, Wu Z-X (2018) Novel SPH SIMSAND-based approach for modeling of granular collapse. Int J Geomech 18(11):04018156

    Article  Google Scholar 

  56. Yuan Y, Lee TR (2013) Contact angle and wetting properties. Springer, Berlin, pp 3–34

    Google Scholar 

  57. Zhang X, Krabbenhoft K, Sheng D, Li W (2015) Numerical simulation of a flow-like landslide using the particle finite element method. Comput Mech 55(1):167–177

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhao C-F, Kruyt NP (2020) An evolution law for fabric anisotropy and its application in micromechanical modelling of granular materials. Int J Solids Struct 196:53–56

    Article  Google Scholar 

  59. Zhao C-F, Yin Z-Y, Hicher P-Y (2018) Integrating a micromechanical model for multiscale analyses. Int J Numer Methods Eng 114(2):105–127

    Article  MathSciNet  Google Scholar 

  60. Zhao YR, Yang HQ, Huang LP, Chen R, Chen XS, Liu SY (2019) Mechanical behavior of intact completely decomposed granite soils along multi-stage loading–unloading path. Eng Geol 260(July):105242

    Article  Google Scholar 

  61. Zhu H, Mehrabadi MM, Massoudi M (2006) Three-dimensional constitutive relations for granular materials based on the dilatant double shearing mechanism and the concept of fabric. Int J Plast 22(5):826–857

    Article  MATH  Google Scholar 

  62. Zhu Q, Shao J-F, Mainguy M (2010) A micromechanics-based elastoplastic damage model for granular materials at low confining pressure. Int J Plast 26(4):586–602

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The financial support provided by the GRF project (Grant No. 15209119) and the RIF project (Grant No. R5037-18F) from the Research Grants Council (RGC) of Hong Kong is gratefully acknowledged. We also gratefully acknowledge the CNRS International Research Network GeoMech for having offered the opportunity to make this project possible through a long-term collaboration of all the authors (http://gdr-mege.univ-lr.fr/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Contact law

Appendix 1: Contact law

This elastic-perfect plastic model includes a Mohr–Coulomb criterion and can be expressed under the following incremental formalism:

$$\begin{aligned} \left\{ \begin{array}{l} \delta {N_i} = {k_n}\delta u_n^i\\ \delta {T_i} = \min \left\{ {\left\| {{T_i} + {k_t}\delta u_t^i} \right\| ,\tan {\varphi _g}\left( {{N_i} + {k_n}\delta u_n^i} \right) } \right\} \times \frac{{{T_i} + {k_t}\delta u_t^i}}{{\left\| {{T_i} + {k_t}\delta u_t^i} \right\| }} - {T_i} \end{array} \right. \end{aligned}$$
(38)

where: \(i=1,2,3,4\) denotes the identifier of contact number.

According to Eqs. (8), (38) can be rewritten as follows:

$$\begin{aligned} \left\{ \begin{array}{ll} \delta {N_i} = - {k_n}\delta {d_i}&{}\\ \delta {T_i} = {k_t}{d_i}\delta {\alpha _j} &{}\text {Elastic regime}\\ \delta {T_i}= \tan \varphi _g \left( {N_i} - {k_n}\delta {d_i}\right) \xi _i- {T_i} &{} \text {Plastic regime} \end{array}\right. \end{aligned}$$
(39)

where: \(\xi _i\) is the sign of \({T_i} + {k_t}{d_i}\delta {\alpha _j}\); \(j=1\) when \(i=1,2\); \(j=2\) when \(i=3,4\); plastic regime is reached when \(\parallel {k_t}{d_i}\delta {\alpha _j}+T_i\parallel \geqslant \tan \varphi _g \left( {N_i} - {k_n}\delta {d_i}\right) \), otherwise it is in elastic regime.

To facilitate the derivation, \(I_i^p\) and \(I_i^e\) are introduced as indicator functions of the contact state, expressed as follow:

$$\begin{aligned} I_i^p = \left\{ {\begin{array}{ll} 1 &{}\quad \text {in plastic regime}\\ 0 &{}\quad \text {in elastic regime} \end{array}} \right. ; \quad I_i^e = 1 - I_i^p \end{aligned}$$
(40)

Thus, the constitutive relations can be expressed as:

$$\begin{aligned} \left\{ \begin{array}{l} \delta {N_i} = - {k_n}\delta {d_i}\\ \delta {T_i} = {B_i}\delta {\alpha _j} - {A_i}\delta {d_i} + C_i \end{array}\right. \end{aligned}$$
(41)

where:\( \left\{ \begin{array}{l} {A_i} = I_i^p {k_n}{\xi _i}\tan {\varphi _g}\\ {B_i} = I_i^e {k_t}{d_i}\\ C_i=I_i^p(\xi _i \tan \varphi _g N_i - T_i) \end{array}\right. \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Yin, ZY., Nicot, F. et al. A novel multi-scale large deformation approach for modelling of granular collapse. Acta Geotech. 16, 2371–2388 (2021). https://doi.org/10.1007/s11440-020-01113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01113-5

Keywords

Navigation