Skip to main content
Log in

On Nonlinear Schrödinger Equations with Repulsive Inverse-Power Potentials

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we consider the Cauchy problem for nonlinear Schrödinger equations with repulsive inverse-power potentials

$$ i \partial _{t} u + \Delta u - c |x|^{-\sigma } u = \pm |u|^{\alpha }u, \quad c>0. $$

We study the local and global well-posedness, finite time blow-up and scattering in the energy space for the equation. These results extend a recent work of Miao-Zhang-Zheng (2018, arXiv:1809.06685) to a general class of inverse-power potentials and higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MATH  Google Scholar 

  2. Benguria, R., Jeanneret, L.: Existence and uniqueness of positive solutions of semilinear elliptic equations with coulomb potentials on \(\mathbb{R}^{3}\). Commun. Math. Phys. 104, 291–306 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bensouilah, A., Dinh, V.D., Zhu, S.: On stability and instability of standing waves for the nonlinear Schrödinger equation with an inverse-square potential. J. Math. Phys. 59, 101505 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burq, N., Planchon, F., Stalker, J., Tahvildar-Zadel, A.S.: Strichartz estimates for the wave and Schrödinger equations with inverse-square potential. J. Funct. Anal. 203(2), 519–549 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. Am. Math. Soc., Boston (2003)

    MATH  Google Scholar 

  6. Chadam, J.M., Glassey, R.T.: Global existence of solutions to the Cauchy problem for time-dependent Hartree equations. J. Math. Phys. 16, 1122–1130 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cho, Y., Ozawa, T.: Sobolev inequalities with symmetry. Commun. Contemp. Math. 11(3), 355–365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \(\mathbb{R}^{3}\). Ann. Math. 167, 767–865 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colliander, J., Grillakis, M., Tzirakis, N.: Tensor products and correlation estimates with applications to nonlinear Schrödinger equations. Commun. Pure Appl. Math. 62(7), 920–968 (2009)

    Article  MATH  Google Scholar 

  10. Csobo, E., Genoud, F.: Minimal mass blow-up solutions for the \(L^{2}\) critical NLS with inverse-square potential. Nonlinear Anal. 168, 110–129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Ancona, P., Fanelli, L., Vega, L., Visciglia, N.: Endpoint Strichartz estimates for the magnetic Schrödinger equation. J. Funct. Anal. 258, 3227–3240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dinh, V.D.: Blowup of \(H^{1}\) solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal. 174, 169–188 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dinh, V.D.: Global existence and blowup for a class of the focusing nonlinear Schrödinger equation with inverse-square potential. J. Math. Anal. Appl. 468(1), 270–303 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dodson, B.: Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension \(d=4\). Ann. Sci. Éc. Norm. Supér. 52(1), 139–180 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fukaya, N., Ohta, M.: Strong instability of standing waves for nonlinear Schrödinger equations with attractive inverse power potential. Osaka J. Math. 56(4), 713–726 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Glassey, R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys. 18, 1794–1797 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, Q., Wang, H., Yao, X.: Dynamics of the focusing 3D cubic NLS with slowly decaying potential, preprint, available at arXiv:1811.37578

  18. Hayashi, N., Ozawa, T.: Time decay of solutions to the Cauchy problem for time-dependent Schrödinger-Hartree equations. Commun. Math. Phys. 110, 467–478 (1987)

    Article  MATH  Google Scholar 

  19. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Killip, R., Visan, M.: The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher. Am. J. Math. 132(2), 361–424 (2010)

    Article  MATH  Google Scholar 

  22. Killip, R., Miao, C., Visan, M., Zhang, J., Zheng, J.: The energy-critical NLS with inverse-square potential. Discrete Contin. Dyn. Syst. 37, 3831–3866 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Killip, R., Murphy, J., Visan, M., Zheng, J.: The focusing cubic NLS with inverse-square potential in three space dimension. Differ. Integral Equ. 30(3–4), 161–206 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Killip, R., Miao, C., Visan, M., Zhang, J., Zheng, J.: Sobolev spaces adapted to the Schrödinger operator with inverse-square potential. Math. Z. 288(3–4), 1273–1298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lenzmann, E., Lewin, M.: Dynamical ionization bounds for atoms. Anal. PDE 6(5), 1183–1211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lions, P.L.: Some remarks on Hartree equation. Nonlinear Anal. 5(11), 1245–1256 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, J., Miao, C., Murphy, J.: Scattering in \(H^{1}\) for the intercritical NLS with an inverse-square potential. J. Differ. Equ. 264(5), 3174–3211 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  28. Maati Ouhabaz, E.: Analysis of heat equations on domains. Princeton University Press, New Jersey (2005)

    MATH  Google Scholar 

  29. Miao, C., Zhang, J., Zheng, J.: Nonlinear Schrödinger equation with coulomb potential, preprint, available at arXiv:1809.06685

  30. Mizutani, H.: Strichartz estimates for Schrödinger equations with slowly decaying potentials. J. Funct. Anal. 279(12), 108789 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Okazawa, N., Suzuki, T., Yokota, T.: Energy methods for abstract nonlinear Schrödinger equations. Evol. Equ. Control Theory 1, 337–354 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. O’Neil, R.: Convolution operators and \(L(p,q)\) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  33. Planchon, F.: On the Cauchy problem in Besov spaces for a non-linear Schrödinger equation. Commun. Contemp. Math. 2(2), 243–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II-Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  35. Ryckman, E., Visan, M.: Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in \(\mathbb{R}^{1+4}\). Am. J. Math. 129(1), 1–60 (2007)

    Article  MATH  Google Scholar 

  36. Sikora, A., Wright, J.: Imaginary powers of Laplace operators. Proc. Am. Math. Soc. 129, 1745–1754 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  38. Talenti, G.: Best constant in Sobolev inequality. Ann. Math. Pures Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equations with combined power-type nonlinearities. Commun. Partial Differ. Equ. 32, 1281–1343 (2007)

    Article  MATH  Google Scholar 

  40. Visan, M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math. J. 138(2), 281–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  MATH  Google Scholar 

  42. Zhang, X.: On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations. J. Differ. Equ. 230, 422–445 (2006)

    Article  MATH  Google Scholar 

  43. Zhang, J., Zheng, J.: Scattering theory for nonlinear Schrödinger equation with inverse-square potential. J. Funct. Anal. 267, 2907–2932 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zheng, J.: Focusing NLS with inverse square potential. J. Math. Phys. 59, 111502 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01). The author would like to express his deep gratitude to his wife - Uyen Cong for her encouragement and support. He would like to thank Prof. Changxing Miao for fruitful discussions on the energy scattering. He also would like to thank the reviewer for his/her helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Duong Dinh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, V.D. On Nonlinear Schrödinger Equations with Repulsive Inverse-Power Potentials. Acta Appl Math 171, 14 (2021). https://doi.org/10.1007/s10440-020-00382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-020-00382-2

Mathematics Subject Classification (2010)

Keywords

Navigation