Skip to main content
Log in

Mapping the variations for implementing information security controls to their operational research solutions

  • Original Article
  • Published:
Information Systems and e-Business Management Aims and scope Submit manuscript

Abstract

Information Security Management is currently guided by process-based standards. Achieving one or some of these standards means deploying their corresponding set of security controls under different constraints on resources, budgets, information assets to protect, and risks to avoid or mitigate, among other factors. This constitutes a complex combinatorial problem in the decision-making process. To select, schedule and deploy these security controls, qualitative approaches have mainly been proposed. Quantitative approaches to information security management are just emerging, and they have been applied only to simplified theoretical cases. The purpose of this paper is to support the notion that the problems of implementing information security controls, in the sense of being put into effect, can be formulated as a family of existing and already solved optimization problems. The main result is a mapping from a set of seven information security management types of problems to their corresponding operational research formulations. A solved case from a governmental institution illustrates the use of the proposed map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Safwani N, Hassan S, Katuk N (2014) A multiple attribute decision making for improving information security control assessment. Int J Comput App 89:19–24. https://doi.org/10.5120/15482-4222

    Article  Google Scholar 

  • Allahverdi A, Ng C, Cheng T, Kovalyov M (2008) A survey of scheduling problems with setup times or costs. Eur J Oper Res 187:985–1032

    Article  Google Scholar 

  • Almeida L, Respício A (2018) Decision support for selecting information security controls. J Decis Syst 0125:1–8. https://doi.org/10.1080/12460125.2018.1468177

    Article  Google Scholar 

  • Association of European Operational Research Societies (2018) What is operational research? https://www.euro-online.org/web/pages/301/or-and-euro. Accessed 14 Apr 2020

  • Bistarelli S, Fioravanti F, Peretti P (2007) Using CP-nets as a guide for countermeasure selection. In: Proceedings of the 2007 ACM symposium on applied computing

  • Blanco C, Lasheras J, Fernández-Medina E et al (2011) Basis for an integrated security ontology according to a systematic review of existing proposals. Comput Stand Interfaces 33:372–388

    Article  Google Scholar 

  • Bonazzi R, Hussami L, Pigneur Y (2009) Compliance management is becoming a major issue in IS design. In: D'Atri A, Saccà D (eds) Information systems: people, organizations, institutions, and technologies. Physica-Verlag HD, pp 391–398. https://doi.org/10.1007/978-3-7908-2148-2_45

  • Breier J (2014) Security evaluation model based on the score of security mechanisms. Inf Sci Technol Bull ACM 6:19–27

    Google Scholar 

  • Breier J, Hudec L (2012) New approach in information system security evaluation. In: IEEE First AESS European conference on satellite telecommunications (ESTEL). IEEE, pp 1–6

  • Breier J, Hudec L (2013b) On selecting critical security controls. In: International conference on availability, reliability and security. pp 582–588

  • Breier J, Hudec L (2013a) On identifying proper security mechanisms. In: Mustofa K, Neuhold EJ, Tjoa AM, Weippl E, You I (eds) Information and communication technology. ICT-EurAsia 2013. Lecture notes in computer science, vol 7804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36818-9_29

  • Butin D, Chicote M, Le Métayer D (2013) Log design for accountability. Proc IEEE CS Secur Priv Work SPW 2013:1–7. https://doi.org/10.1109/SPW.2013.26

    Article  Google Scholar 

  • Butler T, McGovern D (2009) A conceptual model and IS framework for the design and adoption of environmental compliance management systems. Inf Syst Front 14:221–235. https://doi.org/10.1007/s10796-009-9197-5

    Article  Google Scholar 

  • Cabot J, Gogolla M (2012) Object constraint language (OCL): a definitive guide. Formal methods for model-driven engineering. Springer, Berlin, pp 58–90

    Chapter  Google Scholar 

  • Chen J, Askin R (2009) Project selection, scheduling and resource allocation with time dependent returns. Eur J Oper Res 193:23–34

    Article  Google Scholar 

  • Chen L, Li L, Hu Y, Lian K (2009) Information security solution decision-making based on entropy weight and gray situation decision. In: 2009 fifth international conference on information assurance and security. IEEE, pp 7–10

  • Cheng T, Ng C, Yuan J, Liu Z (2005) Single machine scheduling to minimize total weighted tardiness. Eur J Oper Res 165:423–443

    Article  Google Scholar 

  • Choo KK, Mubarak S, Mani D et al (2014) Selection of information security controls based on AHP and GRA. In: Proceedings of the 18th Pacific Asia conference on information systems, pp 1–12

  • Cuihua X, Jiajun L (2009) An information system security evaluation model based on AHP and GRAP. In: 2009 international conference on web information systems and mining, pp 493–496. https://doi.org/10.1109/wism.2009.105

  • Edis E, Oguz C, Ozkarahan I (2013) Parallel machine scheduling with additional resources: notation, classification, models and solution methods. Eur J Oper Res 230:449–463

    Article  Google Scholar 

  • Egeblad J, Pisinger D (2009) Heuristic approaches for the two and three dimensional knapsack packing problem. Comput Oper Res 36:1026–1049

    Article  Google Scholar 

  • Ejnioui A, Otero A, Tejay G, et al (2012) A multi-attribute evaluation of information security controls in organizations using grey systems theory. In: Proceedings of the international conference on security and management (SAM). p 1

  • Espinoza D, Goycoolea M, Moreno E (2015) The precedence constrained knapsack problem: separating maximally violated inequalities. Discrete Appl Math 194:65–80. https://doi.org/10.1016/j.dam.2015.05.020

    Article  Google Scholar 

  • Fenz S, Ekelhart A (2009) Formalizing information security knowledge. In: Proc 4th int symp information, comput commun secur - ASIACCS ’09

  • Fielder A, Panaousis E, Malacaria P et al (2016) Decision support approaches for cyber security investment. Decis Support Syst 86:13–23

    Article  Google Scholar 

  • Florios K, Mavrotas G, Diakoulaki D (2010) Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms. Eur J Oper Res 203:14–21

    Article  Google Scholar 

  • GAMS (2018) General algebraic modeling system. https://www.gams.com/. Accessed 20 Apr 2020

  • Gao C, Li Z, Song H (2009) Security evaluation method based on host resource availability. In: Multimedia and ubiquitous engineering, 2009. MUE’09. Third international conference on. pp 499–504

  • Garvey P (2009) Analytical methods for risk management. Chapman and Hall/CRC, New York. https://doi.org/10.1201/9781420011395

    Google Scholar 

  • Gass S, Saaty T (1955) Parametric objective function (part 2)-generalization. J Oper Res Soc Am 3:395–401

    Google Scholar 

  • Geismar N (2010) Single machine scheduling. Wiley Encycl Oper Res Manag Sci. https://doi.org/10.1002/9780470400531.eorms0786

    Article  Google Scholar 

  • Ghasemi T, Razzazi M (2011) Development of core to solve the multidimensional multiple-choice knapsack problem. Comput Ind Eng 60:349–360

    Article  Google Scholar 

  • Gilaninia S, Mousavian S, Taheri O et al (2012) Information security management on performance of information systems management. J Basic Appl Sci Res 2:2582–2588

    Google Scholar 

  • Gobierno de Chile (2005) Decreto 83: norma técnica para los órganos de la administración del estado sobre seguridad y confidencialidad de los documentos electrónicos. http://bcn.cl/1uw52. Accessed 14 Apr 2020

  • Gobierno de Chile (2015) Programa de mejoramiento de la gestión sistema de seguridad de la información: versión 2015. http://www.dipres.gob.cl/598/articles-51683_intro_Guia_Metodologica04_2015.pdf. Accessed 14 Apr 2020.

  • Guizzardi G, Herre H, Wagner G (2002) Towards ontological foundations for UML conceptual models. In: Meersman R, Tari Z (eds) On the move to meaningful internet systems 2002: CoopIS, DOA, and ODBASE. OTM 2002. Lecture notes in computer science, vol 2519. Springer, Berlin, Heidelberg, pp 1100–1117. https://doi.org/10.1007/3-540-36124-3_70

  • Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207:1–14

    Article  Google Scholar 

  • Herath T, Rao HR (2009) Protection motivation and deterrence: a framework for security policy compliance in organisations. Eur J Inf Syst 18:106–125. https://doi.org/10.1057/ejis.2009.6

    Article  Google Scholar 

  • Herroelen W, Leus R (2005) Project scheduling under uncertainty: Survey and research potentials. Eur J Oper Res 165:289–306

    Article  Google Scholar 

  • Hoogeveen H (2005) Multicriteria scheduling. Eur J Oper Res 167:592–623

    Article  Google Scholar 

  • Humphreys E (2011) Information security management system standards. Datenschutz und Datensicherheit DuD 35:7–11. https://doi.org/10.1007/s11623-011-0004-3

    Article  Google Scholar 

  • International Organization for Standardization (2018) ISO 19011:2018—Guidelines for auditing management systems. https://www.iso.org/standard/70017.html. Accessed 14 April 2020

  • Janak S, Floudas C (2005) Advances in robust optimization approaches for scheduling under uncertainty. Comput Aided Chem Eng 20:1051–1056. https://doi.org/10.1016/S1570-7946(05)80017-3

    Article  Google Scholar 

  • Janak S, Lin X, Floudas C (2007) A new robust optimization approach for scheduling under uncertainty. Comput Chem Eng 31:171–195

    Article  Google Scholar 

  • Kawasaki R, Hiromatsu T (2014) Proposal of a model supporting decision-making on information security risk treatment. Int J Comput Electr Autom Control Inf Eng 8:583–589

    Google Scholar 

  • Khajouei H, Kazemi M, Moosavirad SH (2017) Ranking information security controls by using fuzzy analytic hierarchy process. Inf Syst E-bus Manag 15:1–19. https://doi.org/10.1007/s10257-016-0306-y

    Article  Google Scholar 

  • Kiesling E, Ekelhart A, Grill B, et al (2013a) Simulation-based optimization of IT security controls: initial experiences with meta-heuristic solution procedures. In: Fink A, Geiger M (eds) Proceedings of the workshop of the EURO working group on metaheuristics, pp 18–20

  • Kiesling E, Strauss C, Ekelhart A, et al (2013b) Simulation-based optimization of information security controls: an adversary-centric approach. In: Pasupathy R, Kim SH, Tolk A, Hill R, Kuhl ME (eds) Proceedings of the winter simulation conference. IEEE, pp 2054–2065. https://doi.org/10.1109/wsc.2013.6721583

  • Kiesling E, Strausss C, Stummer C (2012) A multi-objective decision support framework for simulation-based security control selection. In: Proceedings seventh international conference on availability, reliability and security, pp 454–462. https://doi.org/10.1109/ares.2012.70

  • Kolisch R, Meyer K (2006) Selection and scheduling of pharmaceutical research projects. Int Ser Oper Res Manag Sci 92:321–344

    Google Scholar 

  • Kolkowska E, Dhillon G (2013) Organizational power and information security rule compliance. Comput Secur 33:3–11. https://doi.org/10.1016/j.cose.2012.07.001

    Article  Google Scholar 

  • Kolliopoulos S, Steiner G (2007) Partially ordered knapsack and applications to scheduling. Discret Appl Math 155:889–897

    Article  Google Scholar 

  • Koulamas C (2010) The single-machine total tardiness scheduling problem: Review and extensions. Eur J Oper Res 202:1–7

    Article  Google Scholar 

  • Liu F, Lee W (2010) Constructing enterprise information network security risk management mechanism by ontology. Tamkang J Sci Eng 13:79–87

    Google Scholar 

  • Lopes YG, Teixeira A (2015) Assessment of synergies for selecting a project portfolio in the petroleum industry based on a multi-attribute utility function. J Pet Sci Eng 126:131–140. https://doi.org/10.1016/j.petrol.2014.12.012

    Article  Google Scholar 

  • Lv J-J, Wang Y-Z (2010) A ranking method for information security risk management based on ahp and promethee. In: Management and service science (MASS), 2010 international conference on. pp 1–4

  • Lv J, Zhou Y, Wang Y (2011) A Multi-criteria evaluation method of information security controls. In: Proceedings fourth International joint conference on computational sciences and optimization, pp 190–194. https://doi.org/10.1109/cso.2011.43

  • Ma Q, Johnston A, Pearson J (2008) Information security management objectives and practices: a parsimonious framework. Inf Manag Comput Secur 16:251–270. https://doi.org/10.1108/09685220810893207

    Article  Google Scholar 

  • Mauergauz, Y. (2016) Multi-criteria models and decision-making.  In: Advanced planning and scheduling in manufacturing and supply chains, pp 127–162. https://doi.org/10.1007/978-3-319-27523-9_4

  • Masmoudi M, Haït A (2013) Project scheduling under uncertainty using fuzzy modelling and solving techniques. Eng Appl Artif Intell 26:135–149

    Article  Google Scholar 

  • Meng M, Liu E (2015) The application research of information security risk assessment model based on AHP method. J Adv Inf Technol 6:201–206. https://doi.org/10.12720/jait.6.4.201-206

    Article  Google Scholar 

  • Montanari M, Chan E, Larson K et al (2013) Distributed security policy conformance. Comput Secur 33:28–40. https://doi.org/10.1016/j.cose.2012.11.007

    Article  Google Scholar 

  • Mouratidis H (2007) Secure information systems engineering: a manifesto. Int J Electron Secur Digit Forensics 1:27–41

    Article  Google Scholar 

  • Nagata K, Amagasa M, Kigawa Y, Cui D (2009) Method to select effective risk mitigation controls using fuzzy outranking. In: 2009 ninth international conference on intelligent systems design and applications

  • NEOS (2018) NEOS server web portal. https://neos-server.org/neos/. Accessed 20 Apr 2020

  • Van Niekerk J, Von Solms R (2010) Information security culture: a management perspective. Comput Secur 29:476–486. https://doi.org/10.1016/j.cose.2009.10.005

    Article  Google Scholar 

  • Ojamaa A, Tyugu E, Kivimaa J (2008) Pareto-optimal situaton analysis for selection of security measures. In: MILCOM 2008—2008 IEEE military communications conference. IEEE

  • Otero A, Ejnioui A, Otero C, Tejay G (2011) Evaluation of information security controls in organizations by grey relational analysis. Int J Dependable Trust Inf Syst 2:36–54

    Article  Google Scholar 

  • Otero A, Otero C, Qureshi A (2010) A multi-criteria evaluation of information security controls using boolean features. Int J Netw Secur Its Appl 2:1–11. https://doi.org/10.5121/ijnsa.2010.2401

    Article  Google Scholar 

  • Otero A, Tejay G, Otero D, Ruiz-Torres A (2012) A fuzzy logic-based information security control assessment for organizations. In: Open systems (ICOS), 2012 IEEE conference, pp 1–6

  • Parkin S, van Moorsel A, Coles R (2009) An information security ontology incorporating human-behavioural implications. In: Proceedings of the 2nd international conference on Security of information and networks, pp 46–55

  • Pereira T, Santos H (2014) Challenges in information security protection. In: Proceedings 13th European conference on cyber warfare and security, pp 160–166

  • Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic mapping studies in software engineering: an update. Inf Softw Technol 64:1–18. https://doi.org/10.1016/j.infsof.2015.03.007

    Article  Google Scholar 

  • Rees LP, Deane JK, Rakes TR, Baker WH (2011) Decision support for cybersecurity risk planning. Decis Support Syst 51:493–505. https://doi.org/10.1016/j.dss.2011.02.013

    Article  Google Scholar 

  • Saleh M (2011) Information security maturity model. Int J Comput Sci Secur 5:316–337

    Google Scholar 

  • Samavati M, Essam D, Nehring M, Sarker R (2017) A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry. Int J Prod Econ 193:12–20. https://doi.org/10.1016/j.ijpe.2017.06.025

    Article  Google Scholar 

  • Samphaiboon N, Yamada T (2002) Heuristic and exact algorithms for the precedence-constrained knapsack problem. J Optim Theory Appl 105:659–676

    Article  Google Scholar 

  • Sánchez L, Villafranca D, Fernandez-Medina E, Piattini M (2009) MGSM-PYME: Metodología para la gestión de la seguridad y su madurez en las PYMES. In: Proceedings V Congreso Iberoamericano de Seguridad Informática, pp 452–466

  • Sarala R, Zayaraz G, Vijayalakshmi V (2015) Optimal selection of security countermeasures for effective information security. In: Proceedings of the international conference on soft computing systems. Springer, pp 345–353

  • Sawik T (2013) Selection of optimal countermeasure portfolio in IT security planning. Decis Support Syst 55:156–164. https://doi.org/10.1016/j.dss.2013.01.001

    Article  Google Scholar 

  • Shahpasand M, Shajari M, Golpaygani SAH, Ghavamipoor H (2015) A comprehensive security control selection model for inter-dependent organizational assets structure. Inf Comput Secur 23:218–242. https://doi.org/10.1108/ics-12-2013-0090

    Article  Google Scholar 

  • Siponen M, Willison (2009) Information security management standards: problems and solutions. Inf Manag 46:267–270. https://doi.org/10.1016/j.im.2008.12.007

    Article  Google Scholar 

  • Staab S, Studer R (2009) Handbook on ontologies, Springer Sci Bus Media

  • Susanto H, Almunawar M, Tuan Y (2012) Information security challenge and breaches: novelty approach on measuring ISO 27001 readiness level. Int J Eng Technol 2:67–75

    Google Scholar 

  • Susanto H, Almunawar MN, Tuan YC (2011) Information security management system standards: a comparative study of the big five. Int J Electr Comput Sci IJECSIJENS 11:23–29

    Google Scholar 

  • Tasan S, Gen M (2013) An integrated selection and scheduling for disjunctive network problems. Comput Ind Eng 65:6–76

    Google Scholar 

  • Teixeira A, Duarte MDO (2011) A multi-criteria decision model for selecting project portfolio with consideration being given to a new concept for synergies. Pesqui Operacional 31:301–318. https://doi.org/10.1590/S0101-74382011000200006

    Article  Google Scholar 

  • Tofan D (2011) Information security standards. J Mobile Embed Distrib Syst 3:128–135

    Google Scholar 

  • Tosatto SC, Governatori G, Kelsen P (2015) Business process regulatory compliance is hard. IEEE Trans Serv Comput 8:958–970. https://doi.org/10.1109/TSC.2014.2341236

    Article  Google Scholar 

  • Viduto V, Maple C, Huang W, López-Peréz D (2012) A novel risk assessment and optimisation model for a multi-objective network security countermeasure selection problem. Decis Support Syst 53:599–610. https://doi.org/10.1016/j.dss.2012.04.001

    Article  Google Scholar 

  • Von Solms SH (2005) Information security governance—compliance management vs operational management. Comput Secur 24:443–447. https://doi.org/10.1016/j.cose.2005.07.003

    Article  Google Scholar 

  • Wang L, Wang S, Xu Y (2012) An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem. Expert Syst Appl 39:5593–5599

    Article  Google Scholar 

  • Wäscher G, Haubner H, Schumann H (2007) An improved typology of cutting and packing problems. Eur J Oper Res 183:1109–1130

    Article  Google Scholar 

  • Weglarz J, Józefowska J, Mika M, Waligóra G (2011) Project scheduling with finite or infinite number of activity processing modes—a survey. Eur J Oper Res 208:177–205

    Article  Google Scholar 

  • Weitzner DJ, Abelson H, Berners-Lee T et al (2008) Information accountability. Commun ACM 51:82–87. https://doi.org/10.1145/1349026.1349043

    Article  Google Scholar 

  • Wierzbicki AP (1980) The use of reference objectives in multiobjective optimization. In: Fandel G, Gal T (eds) Multiple criteria decision making theory and application. Lecture notes in economics and mathematical systems, vol 177. Springer, Berlin, Heidelberg, pp 468–486. https://doi.org/10.1007/978-3-642-48782-8_32

  • Yameng C, Yulong S, Jianfeng M, et al (2011) AHP-GRAP based security evaluation method for MILS System within CC framework. In: Proceedings seventh international conference on computational intelligence and security, pp 635–639. https://doi.org/10.1109/cis.2011.145

  • Yang Y, Shieh H, Leu J, Tzeng G (2009) A VIKOR-based multiple criteria decision method for improving information security risk. Int J Inf Technol Decis Mak 8:267–287

    Article  Google Scholar 

  • Yang Y, Shieh H, Tzeng G (2013) A VIKOR technique based on DEMATEL and ANP for information security risk control assessment. Inf Sci (Ny) 232:482–500

    Article  Google Scholar 

  • Yau H (2014) Information security controls. Adv Robot Autom 3:e118. https://doi.org/10.4172/2168-9695.1000e118

    Article  Google Scholar 

  • Yevseyeva I, Basto-Fernandes V, Emmerich M, van Moorsel A (2015) Selecting optimal subset of security controls. Procedia Comput Sci 64:1035–1042. https://doi.org/10.1016/j.procs.2015.08.625

    Article  Google Scholar 

  • You B, Yamada T (2007) ). A pegging approach to the precedence-constrained knapsack problem. Eur J Oper Res 183:618–632

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Universidad de La Frontera, through DIUFRO Research Project # DI19-0116

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Diéguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diéguez, M., Bustos, J. & Cares, C. Mapping the variations for implementing information security controls to their operational research solutions. Inf Syst E-Bus Manage 18, 157–186 (2020). https://doi.org/10.1007/s10257-020-00470-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10257-020-00470-8

Keywords

Navigation