Skip to main content
Log in

Uniqueness for an Inverse Source Problem of Determining a Space-Dependent Source in a Non-Autonomous Time-Fractional Diffusion Equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We study uniqueness of a solution for an inverse source problem arising in linear time-fractional diffusion equations with time-dependent coefficients. We consider source term in a separated form h(t)f(x). The unknown source f(x) is recovered from the final time measurement u(x, T). A new uniqueness result is formulated in Theorem 3.1 under the assumption that hC([0, T]) and 0 ≡ h ≥ 0. No monotonicity in time for h(t) and for coefficients of the differential operator is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Prilepko, D.G. Orlovsky, and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics. Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 2000.

    MATH  Google Scholar 

  2. V. Isakov, Inverse Source Problems. Providence, RI: American Mathematical Society, 1990.

    Book  Google Scholar 

  3. A. Hasanov, Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach. J. Math. Anal. Appl. 330, No 2 (2007), 766–779.

    Article  MathSciNet  Google Scholar 

  4. B.T. Johansson and D. Lesnic, A variational method for identifying a spacewise-dependent heat source. IMA J. of Appl. Math. 72, No 6 (2007), 748–760.

    Article  MathSciNet  Google Scholar 

  5. K. Van Bockstal and M. Slodička, Recovery of a space-dependent vector source in thermoelastic systems. Inverse Problems Sci. Eng. 23, No 6 (2015), 956–968.

    Article  MathSciNet  Google Scholar 

  6. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Ser. Applied Mathematical Sciences Vol. 44, Springer, 1983.

  7. V. Isakov, Inverse parabolic problems with the final overdetermination. Commun. on Pure and Appl. Math. 44, No 2 (1991), 185–209.

    Article  MathSciNet  Google Scholar 

  8. M. Slodička and B.T. Johansson, Uniqueness and counterexamples in some inverse source problems. Appl. Math. Letters, 58 (2016), 56–61.

    Article  MathSciNet  Google Scholar 

  9. M. Slodička, Uniqueness for an inverse source problem of determining a space dependent source in a non-autonomous parabolic equation. Appl. Math. Letters, 107 (2020), Article 106395.

  10. M. Kirane, S.A. Malik, and M.A. Al-Gwaiz, An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions. Math. Methods in Appl. Sci., 36, No 9 (2013), 1056–1069.

    Article  MathSciNet  Google Scholar 

  11. M.I. Ismailov and M. Çiçek, Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Modelling 40, No 7 (2016), 4891–4899.

    Article  MathSciNet  Google Scholar 

  12. T. Wei and J. Wang,. A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 78 (2014), 95–111.

    Article  MathSciNet  Google Scholar 

  13. K. Sakamoto and M. Yamamoto, Inverse source problem with a final overdetermination for a fractional diffusion equation. Math. Control Relat. Fields 1, No 4 (2011), 509–518.

    Article  MathSciNet  Google Scholar 

  14. F. Yang, X. Liu, and X.-X. Li, Landweber iterative regularization method for identifying the unknown source of the modified Helmholtz equation. Boundary Value Problems 2017, No 1 (Jun 2017), Art. 91.

    Google Scholar 

  15. J.-G. Wang, Y.-B. Zhou, and T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math. 68 (2013), 39–57.

    Article  MathSciNet  Google Scholar 

  16. P. Niu, T. Helin, and Z. Zhang, An inverse random source problem in a stochastic fractional diffusion equation. Inverse Problems 36, No 4 (Feb 2020), Art. 045002.

    Google Scholar 

  17. M. Slodička, K. Šišková, and K. Van Bockstal, Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation. Appl. Math. Letters 91 (2019), 15–21.

    Article  MathSciNet  Google Scholar 

  18. J.A. Nohel and D.F. Shea, Frequency domain methods for volterra equations. Advances in Math. 22, No 3 (1976), 278–304.

    Article  MathSciNet  Google Scholar 

  19. Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, No 1 (2009), 218–223.

    Article  MathSciNet  Google Scholar 

  20. J.-S. Duan and L. Chen, Solution of fractional differential equation systems and computation of matrix Mittag–Leffler functions. Symmetry 10 (2018), Art. 503.

  21. K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, No 1 (2011), 426–447.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Slodička.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slodička, M. Uniqueness for an Inverse Source Problem of Determining a Space-Dependent Source in a Non-Autonomous Time-Fractional Diffusion Equation. Fract Calc Appl Anal 23, 1702–1711 (2020). https://doi.org/10.1515/fca-2020-0084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0084

MSC 2020

Keywords

Navigation