Skip to main content
Log in

Determination of Time-Dependent Sources and Parameters of Nonlocal Diffusion and Wave Equations from Final Data

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Two inverse problems with final overdetermination for diffusion and wave equations containing the Caputo fractional time derivative and a fractional Laplacian of distributed order are considered. They are: 1) the problem to reconstruct a time-dependent source term; 2) the problem to recover simultaneously the source term, the order of the time derivative and the fractional Laplacian. Uniqueness of solutions of these problems is proved. Sufficient conditions for the uniqueness are stricter for the 2nd problem than for the 1st problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Abatangelo, L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Ann. I. H. Poincaré - AN 34 (2017), 439–467.

    Article  MathSciNet  Google Scholar 

  2. B. Baeumer, S. Kurita, M.M. Meerschaert, Inhomogeneous fractional diffusion equations. Fract. Calc. Appl. Anal. 8, No 4 (2005), 371–386.

    MathSciNet  MATH  Google Scholar 

  3. M. Caputo, Diffusion with space memory modelled with distributed order space fractional differential equations. Annals of Geophysics 46, No 2 (2003), 223–234.

    Google Scholar 

  4. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66 (2002), ID 046129.

  5. R. Courant, D. Hilbert, Methods of Mathematical Physics Vol. 1. Interscience, New York (1953).

  6. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications Springer, New-York (2014), 2nd Ed. (2020).

  7. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products Elsevier, New York (2007)

    MATH  Google Scholar 

  8. G. Gripenberg, S.O. Londen, O. Staffans, Volterra Integral and Functional Equations Cambridge University Press, Cambridge (1990).

    Book  Google Scholar 

  9. J. Janno, N. Kinash, Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements. Inverse Problems 34 (2018), ID 025007.

  10. B. Jin, W. Rundell, A tutorial on inverse problems for anomalous diffusion processes. Inverse Problems 31 (2015), ID 035003.

  11. F. Jones, Lebesgue Integration on Euclidean Space Jones and Bartlett Publishers, London (2001).

    MATH  Google Scholar 

  12. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  13. N. Kinash, J. Janno, Inverse problems for a generalized subdiffusion equation with final overdetermination. Math. Model. Anal. 24, No 2 (2019), 236–262.

    Article  MathSciNet  Google Scholar 

  14. M. Kirane, B. Samet, B. Torebek. Determination of an unknown source term temperature distribution for the sub-diffusion equation at the initial and final data. Electron. J. Diff. Eqns 2017 (2017), 257.

    Article  MathSciNet  Google Scholar 

  15. K. Liao, T. Wei, Identifying a fractional order and a space source term in a time-fractional diffusion-wave equation simultaneously. Inverse Problems 35 (2019), ID 115002.

  16. Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Mathematica Vietnamica 24, No 2 (1999), 207–233.

    MathSciNet  MATH  Google Scholar 

  17. D. Orlovsky, Parameter determination in a differential equation of fractional order with Riemann-Liouville fractional derivative in a Hilbert space. Journal of Siberian Federal University. Mathematics and Physics 8, No 1 (2015), 55–63.

    Article  MathSciNet  Google Scholar 

  18. K. Sakamoto, M. Yamamoto, Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control and Related Fields 1, No 4 (2011), 509–518.

    Article  MathSciNet  Google Scholar 

  19. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications Gordon and Breach Sci. Publ., Amsterdam (1993).

    MATH  Google Scholar 

  20. M. Slodicka, K. Šiškova, K. Van Bockstal, Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation. Appl. Math. Lett. 91 (2019), 15–21.

    Article  MathSciNet  Google Scholar 

  21. I.M. Sokolov, A.V. Chechkin, J. Klafter, Distributed-order fractional kinetics. Acta Physica Polonica B 35, No 4 (2005), 1323–1341.

    Google Scholar 

  22. S. Tatar, S. Ulusoy, An inverse source problem for a one-dimensional space–time fractional diffusion equation. Appl. Anal. 94, No 11 (2015), 2233–2244.

    Article  MathSciNet  Google Scholar 

  23. R. Zacher, Quasilinear Parabolic Problems with Nonlinear Boundary Conditions Dissertation. Martin-Luther-Universität Halle-Wittenberg, Halle (2003); https://www.yumpu.com/en/document/view/4926858/quasilinear-parabolic-problems-with-nonlinear-boundary-conditions.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaan Janno.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janno, J. Determination of Time-Dependent Sources and Parameters of Nonlocal Diffusion and Wave Equations from Final Data. Fract Calc Appl Anal 23, 1678–1701 (2020). https://doi.org/10.1515/fca-2020-0083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0083

MSC 2010

Keywords

Navigation