Skip to main content
Log in

Multidimensional van der Corput-Type Estimates Involving Mittag-Leffler Functions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The paper is devoted to study multidimensional van der Corput-type estimates for the intergrals involving Mittag-Leffler functions. The generalisation is that we replace the exponential function with the Mittag-Lefflertype function, to study multidimensional oscillatory integrals appearing in the analysis of time-fractional evolution equations. More specifically, we study two types of integrals with functions Eα,β (iλφ(x)), x ∈ RN and Eα,β (iαλφ(x)), x ∈ RN for the various range of α and β. Several generalisations of the van der Corput-type estimates are proved. As an application of the above results, the Cauchy problem for the multidimensional time-fractional Klein-Gordon and time-fractional Schrödinger equations are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Boudabsa, T. Simon, P. Vallois, Fractional extreme distributions. ArXiv. (2019). 1–46. arXiv: 1908.00584v1 (2019), 46 pp.

    Google Scholar 

  2. A. Carbery, M. Christ and J. Wright, Multidimensional van der Corput and sublevel set estimates. J. Amer. Math. Soc. 12, No 4 (1999), 981–1015. Volume - added by VK

    Article  MathSciNet  Google Scholar 

  3. R. Chen, G. Yang, Numerical evaluation of highly oscillatory Bessel transforms. J. Comput. Appl. Math. 342 (2018), 16–24.

    Article  MathSciNet  Google Scholar 

  4. J. Dong, M. Xu, Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344 (2008), 1005–1017.

    Article  MathSciNet  Google Scholar 

  5. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications Springer Monographs in Mathematics, Springer, Heidelberg, 2014; 2 Ed., 2020.

  6. R. Grande, Space-time fractional nonlinear Schrödinger equation. SIAM J. Math. Anal. 51, No 5 (2019), 4172–4212.

    Article  MathSciNet  Google Scholar 

  7. I. Kamotski and M. Ruzhansky, Regularity properties, representation of solutions and spectral asymptotics of systems with multiplicities. Comm. Partial Diff. Equations 32 (2007), 1–35.

    Article  MathSciNet  Google Scholar 

  8. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential Equations North-Holland Mathematics Studies, 2006.

    MATH  Google Scholar 

  9. M. Naber, Time fractional Schrödinger equation. J. Math. Phys. 45 (2004), 3339–3352.

    Article  MathSciNet  Google Scholar 

  10. D.H. Phong, E.M. Stein, J. Sturm, Multilinear level set operators, oscillatory integral operators, and Newton polyhedra. Math. Ann. 319 (2001), 573–596.

    Article  MathSciNet  Google Scholar 

  11. I. Podlubny, Fractional Differential Equations Academic Press, New York, 1999.

    MATH  Google Scholar 

  12. M. Ruzhansky, Multidimensional decay in the van der Corput lemma. Studia Math. 208 (2012) 1–10.

    Article  MathSciNet  Google Scholar 

  13. M. Ruzhansky, B.T. Torebek, Van der Corput lemmas for Mittag-Leffler functions. arXiv:2002.07492 (2020), 32 pp.

    Google Scholar 

  14. M. Ruzhansky, B.T. Torebek, Van der Corput lemmas for Mittag-Leffler functions, II, α-directions. ArXiv, 2020, 1-19, arXiv:2005.04546 (2020), 19 pp.

  15. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Ser. 43, Princeton Univ. Press, Princeton, 1993.

    MATH  Google Scholar 

  16. X. Su, J. Zheng, Hölder regularity for the time fractional Schrödinger equation. Math. Meth. Appl. Sci. 43, No 7 (2020), 4847–4870.

    MATH  Google Scholar 

  17. X. Su, Sh. Zhao, M. Li, Dispersive estimates for fractional time and space Schrödinger equation. Math. Meth. Appl. Sci. 2019 (2019); doi: 10.1002/mma.5550.

  18. X. Su, Sh. Zhao, M. Li, Local well-posedness of semilinear space-time fractional Schrödinger equation. J. Math. Anal. Appl. 479, No 1 (2019), 1244–1265.

    Article  MathSciNet  Google Scholar 

  19. J.G. van der Corput, Zahlentheoretische Abschätzungen. Math. Ann. 84, No 1-2 (1921), 53–79.

    Article  MathSciNet  Google Scholar 

  20. S. Xiang, On van der Corput-type lemmas for Bessel and Airy transforms and applications. J. Comput. Appl. Math. 351 (2019), 179–185.

    Article  MathSciNet  Google Scholar 

  21. S. Xiang, Convergence rates of spectral orthogonal projection approximation for functions of algebraic and logarithmatic regularities. ArXiv, (2020), 1–27, arXiv:2006.01522 (2020), 27 pp.

    Google Scholar 

  22. S. Zaman, S., Siraj-ul-Islam, I. Hussain, Approximation of highly oscillatory integrals containing special functions. J. Comput. Appl. Math. 365 (2020), Art. ID 112372.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ruzhansky.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruzhansky, M., Torebek, B.T. Multidimensional van der Corput-Type Estimates Involving Mittag-Leffler Functions. Fract Calc Appl Anal 23, 1663–1677 (2020). https://doi.org/10.1515/fca-2020-0082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0082

MSC 2010

Keywords

Navigation