Skip to main content
Log in

A Survey on Numerical Methods for Spectral Space-Fractional Diffusion Problems

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The survey is devoted to numerical solution of the equation Aαu = f, 0 > α > 1, where A is a symmetric positive definite operator corresponding to a second order elliptic boundary value problem in a bounded domain Ω in Rd. The fractional power Aα is a non-local operator and is defined though the spectrum of A. Due to growing interest and demand in applications of sub-diffusion models to physics and engineering, in the last decade, several numerical approaches have been proposed, studied, and tested. We consider discretizations of the elliptic operator A by using an N-dimensional finite element space Vh or finite differences over a uniform mesh with N points. In the case of finite element approximation we get a symmetric and positive definite operator Ah: Vh → Vh, which results in an operator equation Aαhuh = fh for uhVh.

The numerical solution of this equation is based on the following three equivalent representations of the solution: (1) Dunford-Taylor integral formula (or its equivalent Balakrishnan formula, (2.5)), (2) extension of the a second order elliptic problem in Ω×(0,∞) ⊂ Rd+1 [17, 55] (with a local operator) or as a pseudo-parabolic equation in the cylinder (x, t) ∈ Ω×(0, 1), [70, 29], (3) spectral representation (2.6) and the best uniform rational approximation (BURA) of zα on [0, 1], [37, 40]. Though substantially different in origin and their analysis, these methods can be interpreted as some rational approximation of A−αh. In this paper we present the main ideas of these methods and the corresponding algorithms, discuss their accuracy, computational complexity and compare their efficiency and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Aceto, P. Novati, Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput. 39, No 1 (2017), A214–A228.

    MathSciNet  MATH  Google Scholar 

  2. L. Aceto, P. Novati, Efficient implementation of rational approximations to fractional differential operators. J. Sci. Comput. 76, No 1 (2018), 651–671.

    MathSciNet  MATH  Google Scholar 

  3. L. Aceto, P. Novati, Rational approximations to fractional powers of self-adjoint positive operators. Numer. Math. 143 (2019), 1–16.

    MathSciNet  MATH  Google Scholar 

  4. L. Aceto, P. Novati, Fast and accurate approximations to fractional powers of operators. arXiv:2004.09793 (2020).

    Google Scholar 

  5. G. Acosta, J.P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, No 2 (2017), 472–495.

    MathSciNet  MATH  Google Scholar 

  6. G. Acosta, F.M. Bersetche, J.P. Borthagaray, Finite element approximations for fractional evolution problems. Fract. Calc. Appl. Anal. 22, No 3 (2019), 767–794; DOI: 10.1515/fca-2019-0042; https://www.degruyter.com/view/journals/fca/22/3/fca.22.issue-3.xml.

    MathSciNet  MATH  Google Scholar 

  7. M. Ainsworth, Z. Mao, Fractional phase-field crystal modelling: analysis, approximation and pattern formation. IMA J. of Appl. Math. 85, No 2 (2020), 231–262.

    MathSciNet  MATH  Google Scholar 

  8. A. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them. Pacific J. Math. 10, No 2 (1960), 419–437.

    MathSciNet  MATH  Google Scholar 

  9. T. Baerland, M. Kuchta, K.-A. Mardal, Multigrid methods for discrete fractional Sobolev spaces. SIAM J. Sci. Comput. 41, No 2 (2019), A948–A972.

    MathSciNet  MATH  Google Scholar 

  10. A. Bonito, J.P. Borthagaray, R.H. Nochetto, E. Otárola, A.J. Salgado, Numerical methods for fractional diffusion. Comput. Visual Sci. 19 (2019), 19–46.

    MathSciNet  Google Scholar 

  11. A. Bonito, W. Lei, J.E. Pasciak, Numerical approximation of the integral fractional Laplacian. Numer. Math. 142, No 2 (2019), 235–278.

    MathSciNet  MATH  Google Scholar 

  12. A. Bonito, M. Nazarov, Numerical simulations of surface-quasi geostrophic flows on periodic domains. Preprint arXiv:2006.01180 (2020).

    Google Scholar 

  13. A. Bonito, W. Lei, J.E. Pasciak, On sinc quadrature approximations of fractional powers of regularly accretive operators. J. of Numerical Math. 27, No 2 (2019), 57–68.

    MathSciNet  MATH  Google Scholar 

  14. A. Bonito, J.E. Pasciak, Numerical approximation of fractional powers of elliptic operators. Mathematics of Computation 84, No 295 (2015), 2083–2110.

    MathSciNet  MATH  Google Scholar 

  15. A. Bonito, J.E. Pasciak, Numerical approximation of fractional powers of regularly accretive operators. IMA J. Numer. Anal. 37, No 3 (2017), 1245–1273.

    MathSciNet  MATH  Google Scholar 

  16. D. Brockmann, V. David, A.M. Gallardo, Human mobility and spatial disease dynamics. Rev. of Nonlin. Dyn. and Complexity 2 (2009), 1–24.

    Google Scholar 

  17. L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Commun. in Partial Diff. Equations 32, No 8 (2007), 1245–1260, DOI: 10.1016/j.anihpc.2015.01.004.

    MathSciNet  MATH  Google Scholar 

  18. L.A. Caffarelli and P.R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity. Annales de l'Inst. Henri Poincare (C) Non Linear Anal. 33, No 3 (2016), 767–807.

    MathSciNet  MATH  Google Scholar 

  19. A.L. Chang, H.G. Sun, Time-space fractional derivative models for CO2 transport in heterogeneous media. Fract. Calc. Appl. Anal. 21, No 1 (2018), 151–173; DOI: 10.1515/fca-2018-0010; https://www.degruyter.com/view/journals/fca/21/1/fca.21.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  20. L. Chen, R. Nochetto, O. Enrique, A.J. Salgado, Multilevel methods for non-uniformly elliptic operators and fractional diffusion. Mathematics of Computation 85 (2016), 2583–2607, DOI: 10.1090/mcom/3089.

    MathSciNet  MATH  Google Scholar 

  21. P.G. Ciarlet, The Finite Element Method for Elliptic Problems Classics in Applied Mathematics, SIAM (2002).

    MATH  Google Scholar 

  22. R. Čiegis, V. Starikovičius, S. Margenov, R. Kriauziené, A comparison of accuracy and efficiency of parallel solvers for fractional power diffusion problems. In: Parallel Processing and Applied Mathematics, PPAM 2017. Lecture Notes in Computer Sci. (Eds: R. Wyrzykowski, J. Dongarra, E. Deelman, K. Karczewski) 10777 (2018), 79–89.

    MathSciNet  Google Scholar 

  23. R. Čiegis, V. Starikovičius, S. Margenov, R. Kriauziené, Scalability analysis of different parallel solvers for 3D fractional power diffusion problems. Concurrency and Computation: Practice and Experience 31, No 19 (2019), DOI: 10.1002/cpe.5163.

    Google Scholar 

  24. R. Čiegis, P.N. Vabishchevich, Two-level schemes of Cauchy problem method for solving fractional powers of elliptic operators. Computers & Math. with Appl. 80, No 2 (2019), 305–315; DOI: 10.1016/j.camwa.2019.08.012.

    MathSciNet  MATH  Google Scholar 

  25. R. Čiegis, P.N. Vabishchevich, High order numerical schemes for solving fractional powers of elliptic operators. J. of Comput. and Appl. Math. 372 (2020); DOI: 10.1016/j.cam.2019.112627.

  26. M. M. Djrbashian, Harmonic Analysis and Boundary Value Problems in the Complex Domain. Birkhäuser Verlag, Basel (1993).

    MATH  Google Scholar 

  27. T.A. Driscoll, N. Hale, L. Trefethen, Chebfun Guide Pafnuty Publications (2014).

    Google Scholar 

  28. V. Druskin, L. Knizhnerman, Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19, No 3 (1998), 755–771.

    MathSciNet  MATH  Google Scholar 

  29. B. Duan, R.D. Lazarov, J.E. Pasciak, Numerical approximation of fractional powers of elliptic operators. IMA J. Numerical Anal. 40, No 3 (2019), 1746–1771; DOI: 10.1093/imanum/drz013.

    MathSciNet  MATH  Google Scholar 

  30. M. D'Elia, Q. Du, C. Glusa, M. Gunzburger, X. Tian, and Z. Zhou, Numerical methods for nonlocal and fractional models. Preprint arXiv:2002.01401 (2020).

    Google Scholar 

  31. I. Faragó, Splitting methods and their application to the abstract Cauchy problems. In: Numerical Analysis and Its Applications, NAA 2004. Lecture Notes in Computer Sci. (Eds: Z. Li, L. Vulkov, J. Waśniewski) 3401 (2005), 33–45.

    MATH  Google Scholar 

  32. W. H. Gerstle, Introduction to Practical Peridynamics World Scientific, 2015.

    Google Scholar 

  33. I. Georgieva, S. Harizanov, C. Hofreither, Iterative low-rank approximation solvers for the extension method for fractional diffusion. Computers & Math. with Appl. 80, No 2 (2020), 351–366; DOI: 10.1016/j.camwa.2019.07.016.

    MathSciNet  MATH  Google Scholar 

  34. G. Gilboa and S. Osher, Nonlocal operators with applications to image processing. Multiscale Modeling & Simul. 7, No 3 (2008), 1005–1028.

    MathSciNet  MATH  Google Scholar 

  35. G. Grubb, Regularity of spectral fractional Dirichlet and Neumann problems. Math. Nachrichten 289, No 7 (2016), 831–844.

    MathSciNet  MATH  Google Scholar 

  36. S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, The best uniform rational approximation (BURA) of tαt ∈ [0, 1], α ∈ (0, 1): Applications to solving equations involving fractional powers of elliptic operators. Lecture Notes in Computer Sci. and Technol. No 9, IICT-BAS (2019).

  37. S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, Y. Vutov, Optimal solvers for linear systems with fractional powers of sparse SPD matrices. Numer. Linear Algebra with Appl. 25, No 4 (2018), 115–128.

    MathSciNet  MATH  Google Scholar 

  38. S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, Numerical solution of fractional diffusion–reaction problems based on BURA. Computers & Math. with Appl. 80, No 2 (2020), 316–331; DOI: 10.1016/j.camwa.2019.07.002.

    MathSciNet  MATH  Google Scholar 

  39. S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, J. Pasciak, Comparison analysis of two numerical methods for fractional diffusion problems based on the best rational approximations of tγ on [0, 1]. Lecture Notes in Computer Sci. and Engin. 128 (2019), 165–185.

    MATH  Google Scholar 

  40. S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, J. Pasciak. Analysis of numerical methods for spectral fractional elliptic equations based on the best uniform rational approximation. J. of Comput. Phys. 408 (2020); DOI: 10.1016/j.jcp.2020.109285.

  41. Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resources Res. 34 (1998), 1027–1033.

    Google Scholar 

  42. N.J. Higham, Functions of Matrices: Theory and Computation SIAM, 2008.

    MATH  Google Scholar 

  43. C. Hofreither, A unified view of some numerical methods for fractional diffusion. Computers & Math. with Appl. 80, No 2 (2020), 332–350. DOI: 10.1016/j.camwa.2019.07.025.

    MathSciNet  MATH  Google Scholar 

  44. C. Hofreither, An algorithm for best rational approximation based on barycentric rational interpolation. RICAM-Report No 2020–37 (2020).

  45. M. Ilić, I.W. Turner, V. Anh, A numerical solution using an adaptively preconditioned Lanczos method for a class of linear systems related with the fractional Poisson equation. Int. J. Stochastic Analysis 2008 (2009); DOI:10.1155/2008/104525.

  46. T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan 13, No 3 (1961), 246–274.

    MathSciNet  MATH  Google Scholar 

  47. N. Kosturski, S. Margenov, Y. Vutov, Performance Analysis of MG Preconditioning on Intel Xeon Phi: Towards Scalability for Extreme Scale Problems with Fractional Laplacians. In: Large-Scale Sci. Computing. LSSC 2017. Lecture Notes in Computer Sci. (Eds: I. Lirkov, S. Margenov) 10665 (2018), Springer, Cham, 304–312.

    MathSciNet  MATH  Google Scholar 

  48. M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, No 1 (2017), 7–51; DOI: 10.1515/fca-2017-0002; https://www.degruyter.com/view/journals/fca/20/1/fca.20.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  49. A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M.M. Meerschaert, M. Ainsworth, G. Karniadakis, What is the fractional Laplacian? A comparative review with new results. J. of Computational Physics 404 (2020); DOI: 10.1016/j.jcp.2019.109009.

    Google Scholar 

  50. G.I. Marchuk, Some applications of splitting-up methods to the solution of problems in mathematical physics. Aplikace Matematiky 1 (1968), 103–132.

    MATH  Google Scholar 

  51. P.G. Marinov, A.S. Andreev, A modified Remez algorithm for approximate determination of the rational function of the best approximation in Hausdorff metric. C.R. Acad. Bulg. Sci. 40, No 3 (1987), 13–16.

    MathSciNet  MATH  Google Scholar 

  52. S. Margenov, T. Rauber, E. Atanassov, F. Almeida, V. Blanco, R. Ciegis, A. Cabrera, N. Frasheri, S. Harizanov, R. Kriauzien, G. Ruenger, P. San Segundo, V. Starikovicius, S. Szabo, B. Zavalnij, Applications for ultra-scale systems. IET Professional Applications of Computing Ser. 24 (2019), 189–244.

    Google Scholar 

  53. R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, No 31 (2004), R161–R208.

    Google Scholar 

  54. Y. Nakatsukasa, O. Séte, L.N. Trefethen, The AAA algorithm for rational approximation, SIAM J. Sci. Comp. 40, No 3 (2018), A1494–A1522.

    Google Scholar 

  55. R.H. Nochetto, E. Otárola, A.J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15, No 3 (2015), 733–791.

    MathSciNet  MATH  Google Scholar 

  56. R.H. Nochetto, E. Otárola, A.J. Salgado,A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54, No 2 (2016), 848–873.

    MathSciNet  MATH  Google Scholar 

  57. J. Pedlosky, Geophysical Fluid Dynamics Springer Science & Business Media, 2013.

    MATH  Google Scholar 

  58. I. Podlubny, Fractional Differential Equations. Acad. Press, San Diego, CA, 1999.

    MATH  Google Scholar 

  59. X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian. Archive for Rational Mech. and Anal. 213, No 2, (2014), 587–628.

    MathSciNet  MATH  Google Scholar 

  60. E.B. Saff, H. Stahl, Asymptotic Distribution of Poles and Zeros of Best Rational Approximants to xα on [0, 1]. Ser. Topics in Complex Analysis, Banach Center Publ., Vol. 31, Institute of Mathematics, Polish Academy of Sciences, Warsaw (1995).

  61. A.A. Samarskii, The Theory of Difference Schemes Ser. Pure and Applied Mathematics, Vol. 240, Marcel Dekker, Inc., New York (2001).

  62. F. Song, C. Xu, G.E. Karniadakis, Computing fractional laplacians on complex-geometry domains: Algorithms and simulations. SIAM J. Sci. Comp. 39, No 4 (2017), A1320–A1344.

    MathSciNet  MATH  Google Scholar 

  63. H. Stahl, Best uniform rational approximation of xα on [0, 1]. Bull. Amer. Math. Soc. (N.S.) 28, No 1 (1993), 116–122.

    MathSciNet  MATH  Google Scholar 

  64. H.R. Stahl, Best uniform rational approximation of xα on [0, 1]. Acta Math. 190, No 2 (2003), 241–306.

    MathSciNet  Google Scholar 

  65. G. Strang, On the construction and comparison of difference schemes. SIAM J. Num. Anal. 5 (1968), 506–517.

    MathSciNet  MATH  Google Scholar 

  66. H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlin. Sci. Numer. Simul. 64 (2018), 213–231.

    MATH  Google Scholar 

  67. The MathWorks, Numerics::fMatrix–functional calculus for numerical square matrices; http://www.mathworks.com/access/helpdesk/help/toolbox/mupad/numeric/fMatrix.html.(2009).

    Google Scholar 

  68. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems Springer Ser. in Comput. Mathematics, Vol. 25, Springer-Verlag, Berlin, 2nd Ed. (2006).

  69. L.N. Trefethen, Y. Nakatsukasa, J.A.C. Weideman, Exponential node clustering at singularities for rational approximation, quadrature, and PDEs. arXiv:2007.11828v1 (2020).

    Google Scholar 

  70. P.N. Vabishchevich, Numerical solving the boundary value problem for fractional powers of elliptic operators. CoRR abs/1402.1636 (2014).

    Google Scholar 

  71. P.N. Vabishchevich, Numerically solving an equation for fractional powers of elliptic operators. J. of Comput. Phys. 282 (2015), 289–302.

    MathSciNet  MATH  Google Scholar 

  72. P.N. Vabishchevich, Numerical solution of non-stationary problems for a space-fractional diffusion equation. Fract. Calc. Appl. Anal. 19, No 1 (2016), 116–139; DOI: 10.1515/fca-2016-0007; https://www.degruyter.com/view/journals/fca/19/1/fca.19.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  73. P.N. Vabishchevich, Numerical solution of time-dependent problems with fractional power elliptic operator. Comput. Methods in Appl. Math. 18, No 1 (2018), 111–128.

    MathSciNet  MATH  Google Scholar 

  74. P.N. Vabishchevich, Approximation of a fractional power of an elliptic operator. Numer. Lin. Algebra with Appl. 27, No 3 (2020); DOI: 10.1002/nla.2287.

    Google Scholar 

  75. R.S. Varga, A.J. Carpenter, Some numerical results on best uniform rational approximation of xα on [0, 1]. Numerical Algorithms 2, No 2 (1992), 171–185.

    MathSciNet  MATH  Google Scholar 

  76. N.N. Yanenko, On convergence of the splitting method for heat equation with variable coefficients. J. Comput. Math. Math. Phys. 2, No 5 (1962), 933–937 (in Russian).

    Google Scholar 

  77. J. Xu, L. Zikatanov, The method of alternating projections and the method of subspace corrections in Hilbert space. J. Amer. Math. Soc. 15, No 3 (2002), 573–597, DOI: 10.1090/S0894-0347-02-00398-3.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Harizanov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harizanov, S., Lazarov, R. & Margenov, S. A Survey on Numerical Methods for Spectral Space-Fractional Diffusion Problems. Fract Calc Appl Anal 23, 1605–1646 (2020). https://doi.org/10.1515/fca-2020-0080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0080

MSC 2010

Keywords

Navigation