Skip to main content
Log in

Wave Propagation Dynamics in a Fractional Zener Model with Stochastic Excitation

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Equations of motion for a Zener model describing a viscoelastic rod are investigated and conditions ensuring the existence, uniqueness and regularity properties of solutions are obtained. Restrictions on the coefficients in the constitutive equation are determined by a weak form of the dissipation inequality. Various stochastic processes related to the Karhunen-Loéve expansion theorem are presented as a model for random perturbances. Results show that displacement disturbances propagate with an infinite speed. Some corrections of already published results for a non-stochastic model are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ait Ichou, H. El Amri, A. Ezziani, On existence and uniqueness of solution for space-time fractional Zener model., Acta Appl. Math. (2020), to appear.

    Google Scholar 

  2. W. Arendt, C.J.K. Bety, M. Hieber, F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems Birkhäuser (2011).

    Book  Google Scholar 

  3. T. Atanacković, M. Janev, S. Konjik, S. Pilipović, Complex fractional Zener model of wave propagation in ℝ. Fract. Calc. Appl. Anal. 21, No 5 (2018), 1313–1334; DOI: 10.1515/fca-2018-0069; https://www.degruyter.com/view/journals/fca/21/5/fca.21.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  4. T. Atanacković, M. Janev, S. Konjik, S. Pilipović, Wave equation for generalized Zener model containing complex order fractional derivatives. Contin. Mech. Thermodyn. 29 (2017), 569–583.

    Article  MathSciNet  Google Scholar 

  5. T. Atanacković, M. Janev, S. Pilipović., Wave equation in fractional Zener-type viscoelastic media involving Caputo-Fabrizio fractional derivatives. Meccanica 54, No 1-2 (2019), 155–167.

    Article  MathSciNet  Google Scholar 

  6. T. Atanacković, M. Janev, S. Pilipović, On the restrictions in isothermal deformations of fractional Burgers model. Phil. Trans. R. Soc. A 378 (2020), No 20190278; DOI: 10.1098/rsta.2019.0278.

  7. E. Bazhlekova, I. Bazhlekov, Transition from diffusion to wave propagation in fractional Jeffreys-type heat conduction equation. Fractal Fract. 4 (2020), No 32; DOI: 10.3390/fractalfract4030032.

  8. M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism., Pure Appl. Geophys. 91 (1971), 134–147.

    Article  Google Scholar 

  9. M. Caputo, F. Mainardi, Linear models of dissipation in anelastic solids., Riv. Nuovo Cimento (Ser. II) 1 (1971), 161–198.

    Article  Google Scholar 

  10. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation Springer-Verlag, Berlin-Heidelberg (1974).

    Book  Google Scholar 

  11. M. Fabrizio, Fractional rheological models for thermomechanical systems. Dissipation and free energies. Fract. Calc. Appl. Anal. 17, No 1 (2014), 206–233; DOI: 10.2478/s13540-014-0163-7; https://www.degruyter.com/view/journals/fca/17/1/fca.17.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  12. I.M. Gelfand, N.Ya. Vilenkin, Generalized Functions - Vol 4: Applications of Harmonic Analysis Acad. Press, New York (1964).

    Google Scholar 

  13. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications Springer Monographs in Mathematics, Springer, Heidelberg (2014), 2nd Ed. (2020).

  14. N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45 (2006), 765–771.

    Article  Google Scholar 

  15. R.G. Jaimez, M.J.V. Bonnet, On the Karhunen-Loéve expansion for transformed processes. Trabajos de Estadistica 2, No 2 (1987), 81–90.

    Article  Google Scholar 

  16. S. Jaksi'c, B. Prangoski, Extension theorem of Whitney type for S’(Rd+) by use of the kernel theorem., Publ. de l'Institut Mathematique 99, No 113 (2016), 59–65.

    Article  Google Scholar 

  17. S. Konjik, Lj. Oparnica, D. Zorica, Waves in fractional Zener type viscoelastic media., J. Math. Anal. Appl. 365 (2010), 259–268.

    Article  MathSciNet  Google Scholar 

  18. S. Konjik, Lj. Oparnica, D. Zorica, Waves in viscoelastic media described by a linear fractional model., Integral Transf. Spec Funct. 22 (2011), 283–291.

    Article  MathSciNet  Google Scholar 

  19. S. Konjik, Lj. Oparnica, D. Zorica, Distributed-order fractional constitutive stress-strain relation in wave propagation modeling., Z. Angew. Math. Phys. 70, No 51 (2019); DOI: 10.1007/s00033-019-1097-z.

  20. P.H. Lam, H.C. So, Exponential sum approximation for Mittag-Leffler function and its application to fractional Zener wave equation., J. of Computational Physics 410 (2020), # 109389.

  21. M. Loéve, Probability Theory II Springer Verlag (1978).

    Book  Google Scholar 

  22. Y. Luchko, Fractional wave equation and damped waves., J. Math. Phys. 54 (2013), # 031505.

    Article  MathSciNet  Google Scholar 

  23. Y. Luchko, F. Mainardi, Y. Povstenko, Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation., Computers and Mathematics with Applications 66 (2013), 774–784.

    Article  MathSciNet  Google Scholar 

  24. F. Mainardi, Fractional Calculus and Waves in Linaear Viscoelasticity Imperial College, London (2010).

    Book  Google Scholar 

  25. F. Mainardi, A historical perspective on fractional calculus in linear viscoelasticity. Fract. Calc. Appl. Anal. 15, No 4 (2012), 712–717; DOI: 10.2478/s13540-012-0048-6; https://www.degruyter.com/view/journals/fca/15/4/fca.15.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  26. S.P. Näsholm, S. Holm, On a fractional Zener elastic wave equation., Fract. Calc. Appl. Anal. 16, No 1 (2013), 26–50; DOI: 10.2478/s13540-013-0003-1; https://www.degruyter.com/view/journals/fca/16/1/fca.16.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  27. B. Ø ksendal, Stochastic Differential Equations - An Introduction with Applications Springer-Verlag, Berlin-Heidelberg (2003).

    Book  Google Scholar 

  28. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives - Theory and Applications Gordon and Breach Science Publ., Amsterdam (1993).

    MATH  Google Scholar 

  29. T. Soong, Random Differential Equations in Science and Engineering Academic Press (1973).

    MATH  Google Scholar 

  30. V.S. Vladimirov, Equations of Mathematical Physics Mir Publishers, Moscow (1984).

    Google Scholar 

  31. J.B. Walsh, An Introduction to Stochastic Partial Differential Equations Springer Lecture Notes in Mathematics (1980), 265–437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor Atanacković.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanacković, T., Pilipović, S. & Seleši, D. Wave Propagation Dynamics in a Fractional Zener Model with Stochastic Excitation. Fract Calc Appl Anal 23, 1570–1604 (2020). https://doi.org/10.1515/fca-2020-0079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0079

MSC 2010

Keywords

Navigation