Skip to main content

Advertisement

Log in

Serum amino acid profiles in patients with mild cognitive impairment and in patients with mild dementia or moderate dementia

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders are one of the greatest global challenges for social and health care in the twenty-first century. Nowadays, determination of cerebrospinal fluid biomarkers for early diagnosis is served by a complex sample preparation procedure with limited diagnostic accuracy. Furthermore, neuroimaging methods are expensive, time-consuming and are not readily available for use as a complimentary and common screening method. Recently, researchers have shown an increased interest in the identification and characterization of new blood biomarkers of dementia to minimize the limitations associated with the current methods of biomarker determination. Amino acids play many important roles in the central nervous system, acting as neuromodulators, neurotransmitters and regulators of energy metabolism. The aim of this study was to evaluate if serum amino acid levels change along the continuum from no cognitive impairment to moderate dementia, and to identify putative biomarkers for early diagnosis of neurodegenerative diseases. Serum levels of 16 amino acids were determined in 3 groups of patients—22 with mild cognitive impairment, 45 with mild dementia and 28 with moderate dementia—by high-performance liquid chromatography (HPLC) with fluorescence detection using AccQ Tag column (Waters). The most exciting result is the significantly elevated concentration of arginine in patients with both stages of dementia as compared to mild cognitive impairment individuals. Recent accumulating evidence suggests the implication of changed arginine metabolism in the pathogenesis of neurodegenerative diseases. We conclude that amino acids profiling might be helpful in searching for biomarkers of neurogenerative diseases. In the present study, we discovered that arginine in plasma may have a putative diagnostic value for dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References:

  • Adachi Y, Ono N, Imaizumi A, Muramatsu T, Andou T, Shimodaira Y, Nagao K, Kageyama Y, MoriM NY, Hashizume N, Nukada H (2018) Plasma amino acid profile in severely frail elderly patients in Japan. Int J Gerontol. https://doi.org/10.1016/j.ijge.2018.03.003

    Article  Google Scholar 

  • Assche R, Temmerman L, Dias DA, Boughton B, Boonen K, Braeckman BP, Schoofs L, Roessner U (2015) Metabolic profiling of a transgenic Caenorhabditis elegans Alzheimer model. Metabolomics 11(2):477–486

    Article  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 367(9):795–804

    Article  CAS  Google Scholar 

  • Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, Barnes LL, Fox JH, Bach J (2002) Natural history of mild cognitive impairment in older persons. Neurology 59:198–205

    Article  CAS  Google Scholar 

  • Blantz RC, Satriano J, Gabbai F, Kelly C (2000) Biological effects of arginine metabolites. Acta Physiol Scand 168:21–25

    Article  CAS  Google Scholar 

  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9(91):1–9

    Google Scholar 

  • Bredesen DE (2015) Metabolic profiling distinguishes three subtypes of Alzheimer’s. Aging 7(8):595–600

    Article  CAS  Google Scholar 

  • Corso G, Cristofano A, Sapere N, Marca G, Angiolillo A, Vitale M, Fratangelo R, Lombardi T, Porcile C, Intrieri M, Costanzo A (2017) Serum amino acid profiles in normal subjects and in patients with or at risk of Alzheimer dementia. Dement Geriatr Cognit Disord Extra 7:143–159

    Article  Google Scholar 

  • Fiandaca MS, Mapstone ME, Cheema AK, Federoff HJ (2014) The critical need for defining preclinical biomarkers in Alzheimer’s disease. Alzheimers Dement 10(suppl):S196–S212

    Article  Google Scholar 

  • Figura M, Kuśmierska K, Bucior E, Szlufik S, Koziorowski D, Jamrozik Z, Janik P (2018) Serum amino acid profile in patients with Parkinson’s disease. PLoS ONE 13(1):1–12

    Article  Google Scholar 

  • Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG (2007) Free amino acid and dipeptide changes in the body fluids from Alzheimer’s disease subjects. Amino Acids 32:213–224

    Article  CAS  Google Scholar 

  • Gong Y, Liu Y, Zhou L, Di X, Li W, Li Q (2015) Bi K (2015) A UHPLC-TOF/MS method based metabolomic study of total ginsenosides effects on Alzheimer disease mouse model. J Pharm Biomed Anal 10(115):174–182

    Article  Google Scholar 

  • Graham SF, Chevallier OP, Elliott CT, Hölscher C, Johnston J, McGuinness B (2015) Untargeted metabolomic analysis of human plasma indicates differentially affected polyamine and L-arginine metabolism in mild cognitive impairment subjects converting to Alzheimer’s disease. PLoS ONE 10(3):e0119452. https://doi.org/10.1371/journal.pone.0119452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksen K, O’Bryant S-E, Hampel H, Trojanowski J-Q, Montine T-J, Jeromin A, Blennow K, Lönneborg A, Wyss-Coray T, Soares H, Bazenet C, Sjögren M, Hu W, Lovestone S, Karsdal M-A, Weiner M-W (2014) Blood-based biomarker interest group: The future of blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement 10:115–131

    Article  Google Scholar 

  • Inoue K, Tsutsui H, Akatsu H, Hashizume Y, Matsukawa N, Yamamoto T, Toyo’oka T (2013) Metabolic profiling of Alzheimer’s disease brains. Scientific Reports 3:2364. https://doi.org/10.1038/srep02364

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  CAS  Google Scholar 

  • Köhler C, Magalhaes T, Oliveira J, Alves G, Knochel C, Oertel-Knöchel V, Pantel J, Carvalho A (2016) Neuropsychiatric disturbances in mild cognitive impairment (MCI): a systematic review of population-based studies. Curr Alzheimer Res. 13(10):1066–1082 ((17))

    Article  Google Scholar 

  • Kudlicka A, Martyr A, Bahar-Fuchs A, Woods B, Clare L (2019) Cognitive rehabilitation for people with mild to moderate dementia (Protocol). Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD013388

    Article  PubMed Central  Google Scholar 

  • Leung P, Orrel M, Orgeta V (2015) Social support group interventions in people with dementia and mild cognitive impairment: a systematic review of the literature. Int J Geriatr Psychiatry 30:1–9

    Article  Google Scholar 

  • Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, HongJS, (2002) Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci 962:318–331

    Article  CAS  Google Scholar 

  • Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, Faull RLM, Abraham WC, Zhang H (2014) Altered arginine metabolism in Alzheimer's disease brains. Neurobiol Aging 35(9):1992–2003

    Article  CAS  Google Scholar 

  • Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Mukadam N (2017) Dementia prevention, intervention, and care. The Lancet 390(10113):2673–2734. https://doi.org/10.1016/s0140-6736(17)31363-6

    Article  Google Scholar 

  • Lunardon N, Menardi G, Torelli N (2014) ROSE: a package for binary imbalanced learning. R J 6(1):79–89

    Article  Google Scholar 

  • Morrison LD, Cao XC, Kish SJ (1998) Ornithine decarboxylase in human brain: influence of aging, regional distribution, and Alzheimer’s disease. J Neurochem 71:288–294

    Article  CAS  Google Scholar 

  • Olazarán J, Gil-de-Gómez L, Rodríguez-Martín A, Valentí-Soler M, Frades-Payo B, Marín-Muñoz J, Antúnez C, Frank-García A, Acedo-Jiménez C, Morlán-Gracia L, Petidier-Torregrossa R, Guisasola M-C, Bermejo-Pareja F, Sánchez-Ferro Á, Pérez-Martínez D-A, Manzano-Palomo S, Farquhar R, Rábano A, Calero M (2015) A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer’s disease. J Alzheimers Dis 45:1157–1173

    Article  Google Scholar 

  • Ravaglia G, Forti P, Maioli F, Bianchi G, Martelli M, Talerico T, Servadei L, Zoli M, Mariani E (2004) Plasma amino acid concentrations in patients with amnestic mild cognitive impairment or Alzheimer disease. Am J Clin Nutr 80:483–488

    Article  CAS  Google Scholar 

  • Rosen C, Hansson O, Blennow K, Zetterberg H (2013) Fluid biomarkers in Alzheimer’s disease—current consepts. MolNeurodegener 8:20 http://www.molecularneurodegeneration.com/content/8/1/20

  • Rouse HJ, Small BJ, Faust ME (2019) Assessment of cognitive training & social interaction in people with mild to moderate dementia: a pilot study. Clin Gerontol. https://doi.org/10.1080/07317115.2019.1590489

    Article  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 11 Nov 2020

  • Scheltens P, Blennow K, Breteler M-M, de Strooper B, Frisoni G-B, Salloway S, Van der Flier W-M (2016) Alzheimer’s disease. Lancet 388:505–517

    Article  CAS  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Vural H, Sirin B, Yilmaz N, Eren I, Deliba N (2009) The role of arginine-nitric oxide pathway in patients with Alzheimer Disease. Biol Trace Elem Res 129:58–64. https://doi.org/10.1007/s12011-008-8291-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Koba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The Bioethics Committee of the Nicolaus Copernicus University in Toruń functioning at Collegium Medicum in Bydgoszcz reviewed and approved this study, and written informed consent was required from the participants.

Research involving human participants and/or animals

This study was performed in line with the principles of the Declaration of Helsinki. The Bioethics Committee of the Nicolaus Copernicus University in Toruń functioning at Collegium Medicum in Bydgoszcz reviewed and approved this study.

Informed consent

Informed consent form, patient survey form and investigator survey form were also reviewed and approved by Bioethics Committee. Written informed consent forms have been obtained from all participants.

Additional information

Handling editor: P. Rondard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Socha, E., Kośliński, P., Koba, M. et al. Serum amino acid profiles in patients with mild cognitive impairment and in patients with mild dementia or moderate dementia. Amino Acids 53, 97–109 (2021). https://doi.org/10.1007/s00726-020-02928-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-020-02928-y

Keywords

Navigation