Skip to main content

Advertisement

Log in

Effect of carbonaceous oil palm leaf quantum dot dispersion in nematic liquid crystal on zeta potential, optical texture and dielectric properties

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

In the present work, the dispersion of oil palm leaf based carbonaceous quantum dots (OPL QDs) in nematic liquid crystal (NLC) E 48 eutectic mixture has been reported. The dispersed systems with concentrations 0.1, 0.2, and 0.3 wt% are designated respectively, as MIX 1, MIX 2, and MIX 3. The objective of this study is to analyze the results on the zeta potential, optical texture, dielectric constant, dielectric loss, conductivity, dielectric strength, relaxation frequency, specific power loss and total power loss of pure and OPL QDs dispersed nematic E 48 system. Zeta potential measurement has been performed in the solution state to ensure dispersion stability. The optical textures and dielectric results are recorded after filling the respective samples in sample cells. The core findings in the present study show that the zeta potential varies from − 23.43 mV to + 28.07 mV that signifies the stability of OPL QDs suspension in LCs. Specific power loss (SPL) and total power loss (TPL) are found to be least for MIX 1 which shows that the problem of high power consumption in LCDs can be resolved by dispersing a small weight percent concentration of OPL QDs in LC medium (MIX 1). Improved molecular alignment in the dispersed system has been observed from the textural study which finds its application in good contrast display devices. The color change in the aligned textures with temperature has been attributed to the birefringence change. The porous nature of carbonaceous OPL QDs has its application in supercapacitors. The benchmark results of this study highlight the effect of temperature and frequency on dielectric parameters for both planar and homeotropic state of E 48 LCs. OPL QDs dispersed system display increased conductivity for MIX 3. The decrease in the activation energy for OPL QDs dispersed system in comparison to pure LC material E 48 is a consequential result of the potential barrier change. The increment in the dielectric strength and relaxation frequency of OPL QDs dispersed system is noticed in comparison to pure E 48. These outcomes open the door for the applicability of present LCs in the field of both display and non-display devices like sensors, supercapacitors, low power consumption displays, energy conversion, and electrical storage devices as well as advanced smart systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rastogi, A., Pathak, G., Srivastava, A., Herman, J., Manohar, R.: Cd1−X ZnXS/ZnS core/shell quantum dots in nematic liquid crystals to improve material parameter for better performance of liquid crystal based devices. J. Molliq. 255, 93–101 (2018)

    CAS  Google Scholar 

  2. Rastogi, A., Agrahari, K., Pathak, G., Srivastava, A., Herman, J., Manohar, R.: Study of an interesting physical mechanism of memory effect in nematic liquid crystal dispersed with quantum dots. Liq. Cryst. 46, 725–736 (2019)

    Article  CAS  Google Scholar 

  3. Pandey, F.P., Rastogi, A., Singh, S.: Optical properties and zeta potential of carbon quantum dots (CQDs) dispersed nematic liquid crystal 4’-heptyl-4-biphenylcarbonitrile (7CB). Opt. Mater. 105, 109849 (2020)

    Article  CAS  Google Scholar 

  4. Rastogi, A., Pandey, F.P., Hegde, G., Manohar, R.: Time-resolved fluorescence and UV absorbance study on Elaeis guineensis/oil palm leaf based carbon nanoparticles doped in nematic liquid crystals. J. Molliq. 304, 112773 (2020)

    CAS  Google Scholar 

  5. Chao, M.J., Park, H.G., Jeong, H.C., Lee, J.W., Jung, Y.H., Kim, D.H., Kim, J.H., Lee, J.W., Seo, D.S.: Superior fast switching of liquid crystal devices using graphene quantum dots. Liq. Cryst. 41, 761–767 (2014)

    Article  Google Scholar 

  6. Wang, Y., Hu, A.: Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921 (2014)

    Article  CAS  Google Scholar 

  7. Ambasankar, K.N., Bhattacharjee, L., Jat, S.K., Bhattacharjee, R.R., Mohanta, K.: Study of electrical charge storage in polymer–carbon quantum dot composite. ChemistrySelect 2, 4241–4247 (2017)

    Article  CAS  Google Scholar 

  8. Praseetha, K.P., Divyasree, M.C., John, V.N., Chandrasekharan, K., Varghese, S.: Enhanced optical nonlinearity in nematic liquid crystal on doping with CdSe quantum dot. J. Molliq. 273, 497–503 (2019)

    Google Scholar 

  9. Wu, K.J., Chu, K.C., Chao, C.Y., Chen, Y.F., Lai, C.-W., Kang, C.C., Chen, C.Y., Chou, P.T.: CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices. Nano Lett. 7, 1908–1913 (2007)

    Article  CAS  Google Scholar 

  10. Pandey, S., Singh, D.P., Agrahari, K., Srivastava, A., Czerwinski, M., Kumar, S., Manohar, R.: CdTe quantum dot dispersed ferroelectric liquid crystal: transient memory with faster optical response and quenching of photoluminescence. J. Molliq. 237, 71–80 (2017)

    CAS  Google Scholar 

  11. Kurochkina, M.A., Konshina, E.A., Khmelevskaia, D.: Photoluminescence of CdSe/ZnS quantum dots in nematic liquid crystals in electric fields. Beilstein J. Nanotechnol. 9, 1544–1549 (2018)

    Article  CAS  Google Scholar 

  12. Kumar, A., Hegde, G., Manaf, S.A.B.A., Ngaini, Z., Sharma, K.V.: Catalyst free silica templated porous carbon nanoparticles from bio-waste materials. Chem. Comm. 50, 12702 (2014)

    Article  CAS  Google Scholar 

  13. Ali, G.A.M., Divyashree, A., Supriya, S., Chong, K.F., Ethiraj, A.S., Reddy, M.V., Algarni, H., Hegde, G.: Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans. 46, 14034 (2017)

    Article  CAS  Google Scholar 

  14. Tripathi, P.K., Joshi, B., Singh, S.: Pristine and quantum dots dispersed nematic liquid crystal. Impact of dispersion and applied voltage on dielectric and electro-optical properties. Opt. Mater. 69, 61–66 (2017)

    Article  CAS  Google Scholar 

  15. Singh, B.P., Pathak, G., Roy, A., Hegde, G., Tripathi, P.K., Srivastava, A., Manohar, R.: Investigation of dielectric and electro-optical properties of nematic liquid crystal with the suspension of biowaste-based porous carbon nanoparticles. Liq. Cryst. 46, 1808–1820 (2019)

    Article  CAS  Google Scholar 

  16. Pathak, G., Katiyar, R., Agrahari, K., Srivatava, A., Dabrowski, R., Garbat, K., Manohar, R.: Analysis of birefringence property of three different nematic liquid crystals dispersed with TiO2 nanoparticles. Opto-Electron. Rev. 26, 11–18 (2018)

    Article  Google Scholar 

  17. Rastogi, A., Hegde, G., Manohar, T., Manohar, R.: Effect of oil palm leaf–based carbon quantum dot on nematic liquid crystal and its electro–optical effects. Liq. Cryst. (2020). https://doi.org/10.1080/02678292.2020.1817997

    Article  Google Scholar 

  18. Li, J., Baird, G., Lin, Y.-H., Ren, H., Wu, S.-T.: Refractive- index matching between liquid crystals and photopolymers. J SID 13, 1017 (2005)

    Google Scholar 

  19. Rastogi, A., Manohar, R.: Effect of graphene oxide dispersion in nematic mesogen and their characterization results. Appl. Phys. A. 125, 192 (2019)

    Article  Google Scholar 

  20. Lück, J., Latz, A.: Modeling of the electrochemical double layer and its impact on intercalation reactions. Phys. Chem. Chem. Phys. 20, 27804–27821 (2018)

    Article  Google Scholar 

  21. Sudo, S., Ohtomo, T., Otsuka, K.: Easy measurement and analysis method of zeta potential and electrophoretic mobility of water-dispersed colloidal particles by using a self-mixing solid-state laser. J. Appl. Phys. 114, 063106 (2013)

    Article  Google Scholar 

  22. Rayssi, C.H., Kossi, S.E., Dhahri, J., Khirouni, K.: Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1 Ti1−xCo4x/3 O3 (0 ≤ x ≤ 0.1). RSC Adv. 8, 17139 (2018)

    Article  CAS  Google Scholar 

  23. Rayssi, C.H., Rhouma, F.I.H., Dhahri, J., Khirouni, K., Zaidi, M., Belmabrouk, H.: Structural, electric and dielectric properties of. Appl. Phys. A. 123, 778 (2017)

    Article  CAS  Google Scholar 

  24. Cetiner, S., Sirin, S.: Frequency and temperature dependence of dielectric behaviors for conductive acrylic composites. Adv. Poly. Technol. 35, 1 (2016)

    Google Scholar 

  25. Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  26. Gheshlaghi, N., Faraji, M., Pisheh, H.S.: Structural dependent, dielectric and conduction analysis of CdSe based quantum dots. SN Appl. Sci. 1, 401 (2019)

    Article  Google Scholar 

  27. Gambino, J.P., Kingery, W.D., Pike, G.E., Philipp, H.R., Levinson, L.M.: Grain boundary electronic states in some simple ZnO varistors. J. Appl. Phys. 61(7), 2571–2574 (1987)

    Article  CAS  Google Scholar 

  28. Mansingh, A.: AC conductivity of amorphous semiconductors. Bull. Mater. Sci. 2, 325–351 (1980)

    Article  CAS  Google Scholar 

  29. Kumar, J., Prasad, V., Manjunath, M.: Quantum dots dispersed sticky nematic liquid crystal: studies on dielectric permittivities, elastic constants and electrical conductivity. J. Molliq. 266, 10–18 (2018)

    CAS  Google Scholar 

  30. Sharma, A., Malik, P., Kumar, P.: Electro-optical and dielectric responses of ZnO nanoparticles doped nematic liquid crystal in in-plane switching (IPS) Mode. Integr. Ferroelectr. 202(1), 52–66 (2019)

    Article  CAS  Google Scholar 

  31. Singh, K.N.: Dielectric relaxation studies of silver nanoparticles dispersed liquid crystal. J. Adv. Phys. 8(3), 2176–2188 (2015)

    Article  Google Scholar 

  32. Gao, M., Ma, L., Luo, J.: Effect of alkyl chain length on the orientational behavior of liquid crystal. Nano-Film Tribol Lett. 62, 24 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

Ayushi Rastogi Acknowledges UGC (F-25-1/2014-15(BSR)/ 7-177/2007/BSR) New Delhi for UGC-BSR Fellowship. Author Gurumurthy Hegde acknowledges to DST Nanomission, Govt of India for research grant with file No [SR/NM/NT-1026/2017]. Author Rajiv Manohar acknowledges UGC for the grant of a MID Career Award dated 22 March 2018 [No.F.19-224/2018 (BSR)]. Authors also acknowledges to Centre of Excellence at APJ Abdul Kalam Centre for Innovation, University of Lucknow and Dr. A. S. Parmar, Banaras Hindu University, (BHU), Varanasi for providing experimental facilities in the Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

AR: conceptualization, writing manuscript, formal analysis; FPP: experiments performed and formal analysis; ASP: providing experimental facilities; GH: reviewing, and editing; SS: conceptualization, writing—original draft, visualization, supervision; RM: conceptualization, writing—original draft, visualization, supervision.

Corresponding authors

Correspondence to Shri Singh or Rajiv Manohar.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3811 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastogi, A., Pandey, F.P., Parmar, A.S. et al. Effect of carbonaceous oil palm leaf quantum dot dispersion in nematic liquid crystal on zeta potential, optical texture and dielectric properties. J Nanostruct Chem 11, 527–548 (2021). https://doi.org/10.1007/s40097-020-00382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00382-6

Keywords

Navigation