Skip to main content
Log in

Augmented Lagrangian approach for a bilateral free boundary problem

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this work, a class of bilateral free boundary problem is considered. This identification problem is formulated as a shape optimization problem via the definition of a cost functional. The existence of an optimal solution for the optimization problem is proved. An augmented Lagrangian approach is used to facilitate the computation of the shape derivatives. A numerical approach is proposed to solve iteratively the shape optimization problem, also we prove its convergence. Various type of domains are investigated to confirm the validity of the presented approach. For the numerical stability we investigate the shape without and with noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amstutz, S.: Augmented Lagrangian for cone constrained topology optimization. Comput. Optim. Appl. 49(1), 101–122 (2011). https://doi.org/10.1007/s10589-009-9272-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Cea, J.: Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût. Modélisation mathématique et analyse numérique 20(3), 371–402 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Chakib, A., Ellabib, A., Nachaoui, A., Nachaoui, M.: A shape optimization formulation of weld pool determination. Appl. Math. Lett. 25(3), 374–379 (2012). https://doi.org/10.1016/j.aml.2011.09.017

    Article  MathSciNet  MATH  Google Scholar 

  4. Ciarlet, P.G.: The finite element method for elliptic problems. Soc. Ind. Appl. Math. (2002). https://doi.org/10.1137/1.9780898719208

    Article  MATH  Google Scholar 

  5. Conn, A.R., Gould, N.I.M., Toint, P.: A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28(2), 545–572 (1991). https://doi.org/10.1137/0728030

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai, Y.H.: Convergence properties of the BFGS algorithm. SIAM J. Optim. 13(3), 693–701 (2002)

    Article  MathSciNet  Google Scholar 

  7. Dashti Ardakani, M., Khodadad, M.: Shape estimation of a cavity by inverse application of the 2D elastostatics problem. Int. J. Comput. Methods 10(06), 1350042 (2013). https://doi.org/10.1142/S0219876213500424

    Article  MathSciNet  MATH  Google Scholar 

  8. Delfour, M.C., Zolésio, J.P.: Shapes and geometries. Soc. Ind. Appl. Math. (2011). https://doi.org/10.1137/1.9780898719826

    Article  MATH  Google Scholar 

  9. Dimakopoulos, Y., Makrigiorgos, G., Georgiou, G.C., Tsamopoulos, J.: The PAL (penalized augmented Lagrangian) method for computing viscoplastic flows: a new fast converging scheme. J. Nonnewton. Fluid Mech. 256, 23–41 (2018). https://doi.org/10.1016/j.jnnfm.2018.03.009

    Article  MathSciNet  Google Scholar 

  10. Dimakopoulos, Y., Pavlidis, M., Tsamopoulos, J.: Steady bubble rise in Herschel–Bulkley fluids and comparison of predictions via the augmented Lagrangian method with those via the Papanastasiou model. J. Nonnewton. Fluid Mech. 200, 34–51 (2013). https://doi.org/10.1016/j.jnnfm.2012.10.012

    Article  Google Scholar 

  11. El Yazidi, Y., Ellabib, A.: Reconstruction of the depletion layer in MOSFET by genetic algorithms. Math. Model. Comput. 7(1), 96–103 (2020). https://doi.org/10.23939/mmc2020.01.096

    Article  Google Scholar 

  12. Ellabib, A., Nachaoui, A.: On the numerical solution of a free boundary identification problem. Inverse Probl. Eng. 9(3), 235–260 (2001). https://doi.org/10.1080/174159701088027764

    Article  MATH  Google Scholar 

  13. Glowinski, R., Fortin, M.: Augmented Lagrangian Methods Applications to the Numerical Solution of Boundary-Value Problems. Elsevier, Amsterdam (1983)

    MATH  Google Scholar 

  14. Glowinski, R., Le Tallec, P.: Numerical solution of problems in incompressible finite elasticity by augmented Lagrangian methods. I. Two-dimensional and axisymmetric problems. SIAM J. Appl. Math. 42(2), 400–429 (1982). https://doi.org/10.1137/0142031

    Article  MathSciNet  MATH  Google Scholar 

  15. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  16. Huang, C.H., Shih, C.C.: A shape identification problem in estimating simultaneously two interfacial configurations in a multiple region domain. Appl. Therm. Eng. 26(1), 77–88 (2006). https://doi.org/10.1016/j.applthermaleng.2005.04.019

    Article  Google Scholar 

  17. Liu, J.C.: Shape reconstruction of conductivity interface problems. Int. J. Comput. Methods 16(01), 1850092 (2018). https://doi.org/10.1142/S0219876218500925

    Article  MathSciNet  MATH  Google Scholar 

  18. Mozaffari, M.H., Khodadad, M., Dashti Ardakani, M.: Simultaneous identification of multi-irregular interfacial boundary configurations in non-homogeneous body using surface displacement measurements. J. Mech. Eng. Sci. 231(13), 1–12 (2016). https://doi.org/10.1177/0954406216636166

    Article  Google Scholar 

  19. Nazemi, A.R., Farahi, M.H., Zamirian, M.: Filtration problem in inhomogeneous dam by using embedding method. J. Appl. Math. Comput. 28(1), 313 (2008). https://doi.org/10.1007/s12190-008-0107-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  21. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin (1982). https://doi.org/10.1007/BFb0006123

    Book  MATH  Google Scholar 

  22. Powell, M.: Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In: Nonlinear Programming: Proceedings of a Symposium in Applied Mathematics, pp. 53–72 (1976)

  23. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  24. Vogel, C.R.: Computational methods for inverse problems. Soc. Ind. Appl. Math. (2002). https://doi.org/10.1137/1.9780898717570

    Article  MATH  Google Scholar 

  25. Wang, Z., Zhu, D.: A filter-line-search method for unconstrained optimization. J. Appl. Math. Comput. 34(1), 329–342 (2010). https://doi.org/10.1007/s12190-009-0324-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, R., Sun, J.: The reconstruction of obstacles in a waveguide using finite elements. J. Comput. Math. 36(1), 29–46 (2018). https://doi.org/10.4208/jcm.1610-m2016-0559

    Article  MathSciNet  MATH  Google Scholar 

  27. Zolesio, J.P., Sokolowski, J.: Introduction to Shape Optimization Shape Sensitivity Analysis. Springer, Berlin (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youness El Yazidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Yazidi, Y., Ellabib, A. Augmented Lagrangian approach for a bilateral free boundary problem. J. Appl. Math. Comput. 67, 69–88 (2021). https://doi.org/10.1007/s12190-020-01472-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01472-y

Keywords

Mathematics Subject Classification

Navigation