Skip to main content
Log in

Uterine leiomyosarcomas with osteoclast-like giant cells associated with high expression of RUNX2 and RANKL

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Uterine leiomyosarcoma (ULMS) with osteoclast-like giant cells (OLGCs) has been reported as a rare phenomenon in ULMS, and its clinico-pathological features and tumorigenesis remain unclear. We recently reported high expression of receptor activator of nuclear factor κB ligand (RANKL) in ULMS with OLGCs. As osteoblasts produce RANKL, in this study, we analyzed the expression of Runt-related transcription factor 2 (RUNX2), a critical transcription factor for osteoblasts, and osteoclast-related proteins in three cases of ULMS with OLGCs as well as five conventional ULMSs and nine leiomyomas. Immunohistochemistry and real-time reverse transcription quantitative polymerase chain reaction analyses showed high expression of RUNX2 and RANKL in ULMS with OLGCs. In these cases, macrophages expressed receptor activator of nuclear factor κB (RANK), and OLGCs expressed osteoclast-related proteins (nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), and cathepsin K). Accumulation sites of cathepsin K–positive OLGCs showed hemorrhagic appearance and degraded type IV collagen. We reviewed reported cases of ULMS with OLGCs, including ours, and found that they presented an aggressive course even at stage I. Furthermore, metastatic lesions showed similar histological features to those of OLGC association in ULMS. Here, we show that tumor cells in ULMS with OLGCs highly express RUNX2 and RANKL and that osteoclastic differentiation of macrophages occurs in the tumor tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Major FJ, Blessing JA, Silverberg SG, Morrow CP, Creasman WT, Currie JL, Yordan E, Brady MF (1993) Prognostic factors in early-stage uterine sarcoma. A Gynecologic Oncology Group study. Cancer 71:1702–1709. https://doi.org/10.1002/cncr.2820710440

    Article  CAS  PubMed  Google Scholar 

  2. Abeler VM, Røyne O, Thoresen S, Danielsen HE, Nesland JM, Kristensen GB (2009) Uterine sarcomas in Norway. A histopathological and prognostic survey of a total population from 1970 to 2000 including 419 patients. Histopathology 54:355–364. https://doi.org/10.1111/j.1365-2559.2009.03231.x

    Article  PubMed  Google Scholar 

  3. Koivisto-Korander R, Martinsen JI, Weiderpass E, Leminen A, Pukkala E (2012) Incidence of uterine leiomyosarcoma and endometrial stromal sarcoma in Nordic countries: results from NORDCAN and NOCCA databases. Maturitas 72:56–60. https://doi.org/10.1016/j.maturitas.2012.01.021

    Article  CAS  PubMed  Google Scholar 

  4. Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, Chon HS, Chu C, Cohn D, Crispens MA, Damast S, Dorigo O, Eifel PJ, Fisher CM, Frederick P, Gaffney DK, George S, Han E, Higgins S, Huh WK, Lurain JR III, Mariani A, Mutch D, Nagel C, Nekhlyudov L, Fader AN, Remmenga SW, Reynolds RK, Tillmanns T, Ueda S, Wyse E, Yashar CM, McMillian NR, Scavone JL (2018) Uterine Neoplasms, Version 1.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 16:170–199. https://doi.org/10.6004/jnccn.2018.0006

    Article  Google Scholar 

  5. Wu TI, Chang TC, Hsueh S, Hsu KH, Chou HH, Huang HJ, Lai CH (2006) Prognostic factors and impact of adjuvant chemotherapy for uterine leiomyosarcoma. Gynecol Oncol 100:166–172. https://doi.org/10.1016/j.ygyno.2005.08.010

    Article  PubMed  Google Scholar 

  6. Kapp DS, Shin JY, Chan JK (2008) Prognostic factors and survival in 1396 patients with uterine leiomyosarcomas: emphasis on impact of lymphadenectomy and oophorectomy. Cancer 112:820–830. https://doi.org/10.1002/cncr.23245

    Article  PubMed  Google Scholar 

  7. Oliva E, Young RH, Amin MB, Clement PB (2002) An immunohistochemical analysis of endometrial stromal and smooth muscle tumors of the uterus: a study of 54 cases emphasizing the importance of using a panel because of overlap in immunoreactivity for individual antibodies. Am J Surg Pathol 26:403–412. https://doi.org/10.1097/00000478-200204000-00001

    Article  PubMed  Google Scholar 

  8. Darby AJ, Papadaki L, Beilby JO (1975) An unusual leiomyosarcoma of the uterus containing osteoclast-like giant cells. Cancer 36:495–504. https://doi.org/10.1002/1097-0142(197508)36:2<495::aid-cncr2820360228>3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  9. Evans N (1920) Malignant myomata and related tumors of the uterus; report of 72 cases occurring in a series of 4,000 operations for uterine fibromyomata. Surg Gynecol Obstet 30:225–239

    Google Scholar 

  10. Pilon VA, Parikh N, Maccera J (1986) Malignant osteoclast-like giant cell tumor associated with a uterine leiomyosarcoma. Gynecol Oncol 23:381–386. https://doi.org/10.1016/0090-8258(86)90142-3

    Article  CAS  PubMed  Google Scholar 

  11. Marshall RJ, Braye SG, Jones DB (1986) Leiomyosarcoma of the uterus with giant cells resembling osteoclasts. Int J Gynecol Pathol 5:260–268. https://doi.org/10.1097/00004347-198609000-00008

    Article  CAS  PubMed  Google Scholar 

  12. Sieiński W (1990) Malignant giant cell tumor associated with leiomyosarcoma of the uterus. Cancer 65:1838–1842. https://doi.org/10.1002/1097-0142(19900415)65:8<1838::AID-CNCR2820650829>3.0.CO;2-1

    Article  PubMed  Google Scholar 

  13. Chen KTK (1995) Leiomyosarcoma with osteoclast-like giant cells. Am J Surg Pathol 19:487–488. https://doi.org/10.1097/00000478-199504000-00017

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe K, Hiraki H, Ohishi M, Mashiko K, Saginoya H, Suzuki T (1996) Uterine leiomyosarcoma with osteoclast-like giant cells: histopathological and cytological observations. Pathol Int 46:656–660. https://doi.org/10.1111/j.1440-1827.1996.tb03668.x

    Article  CAS  PubMed  Google Scholar 

  15. Aru A, Norup P, Bjerregaard B, Andreasson B, Horn T (2001) Osteoclast-like giant cells in leiomyomatous tumors of the uterus. A case report and review of the literature. Acta Obstet Gynecol Scand 80:371–374. https://doi.org/10.1034/j.1600-0412.2001.080004371.x

    Article  CAS  PubMed  Google Scholar 

  16. Patai K, Illyes G, Varbiro S, Gidai J, Kosa L, Vajo Z (2006) Uterine leiomyosarcoma with osteoclast like giant cells and long standing systemic symptoms. Gynecol Oncol 102:403–405. https://doi.org/10.1016/j.ygyno.2006.02.030

    Article  PubMed  Google Scholar 

  17. Sukpan K, Khunamornpong S, Suprasert P, Siriaunkgul S (2010) Leiomyosarcoma with osteoclast-like giant cells of the uterus: a case report and literature review. J Med Assoc Thail 93:510–515

    Google Scholar 

  18. van Meurs HS, Dieles JJ, Stel HV (2012) A uterine leiomyoma in which a leiomyosarcoma with osteoclast-like giant cells and a metastasis of a ductal breast carcinoma are present. Ann Diagn Pathol 16:67–70. https://doi.org/10.1016/j.anndiagpath.2010.11.010

    Article  PubMed  Google Scholar 

  19. Terasaki M, Terasaki Y, Yoneyama K, Kuwahara N, Wakamatsu K, Nagahama K, Kunugi S, Takeshita T, Shimizu A (2015) Uterine leiomyosarcoma with osteoclast-like giant cells associated with high expression of receptor activator of nuclear factor κB ligand. Hum Pathol 46:1679–1684. https://doi.org/10.1016/j.humpath.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  20. Croce S, Ducoulombier A, Ribeiro A, Lesluyes T, Noel JC, Amant F, Guillou L, Stoeckle E, Devouassoux-Shisheboran M, Penel N, Floquet A, Arnould L, Guyon F, Mishellany F, Chakiba C, Cuppens T, Zikan M, Leroux A, Frouin E, Farre I, Genestie C, Valo I, MacGrogan G, Chibon F (2018) Genome profiling is an efficient tool to avoid the STUMP classification of uterine smooth muscle lesions: a comprehensive array-genomic hybridization analysis of 77 tumors. Mod Pathol 31:816–828. https://doi.org/10.1038/modpathol.2017.185

    Article  CAS  PubMed  Google Scholar 

  21. Laforga JB, Cortés VA (2020) Uterine pleomorphic leiomyosarcoma with osteoclastic giant cells: case report with peritoneal washing cytology and cell block study. Rev Esp Pathol 53:61–65. https://doi.org/10.1016/j.patol.2018.06.002

    Article  Google Scholar 

  22. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki SI, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602. https://doi.org/10.1073/pnas.95.7.3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176. https://doi.org/10.1016/s0092-8674(00)81569-x

    Article  CAS  PubMed  Google Scholar 

  24. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue JI, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901. https://doi.org/10.1016/s1534-5807(02)00369-6

    Article  CAS  PubMed  Google Scholar 

  25. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764. https://doi.org/10.1016/S0092-8674(00)80258-5

    Article  CAS  PubMed  Google Scholar 

  26. Huang L, Xu J, Wood DJ, Zheng MH (2000) Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol 156:761–767. https://doi.org/10.1016/S0002-9440(10)64942-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nishimura M, Yuasa K, Mori K, Miyamoto N, Ito M, Tsurudome M, Nishio M, Kawano M, Komada H, Uchida A, Ito Y (2006) Cytological properties of stromal cells derived from giant cell tumor of bone (GCTSC) which can induce osteoclast formation of human blood monocytes without cell to cell contact. J Orthop Res 23:979–987. https://doi.org/10.1016/j.orthres.2005.01.004

    Article  CAS  Google Scholar 

  28. Salerno M, Avnet S, Alberghini M, Giunti A, Baldini N (2008) Histogenetic characterization of giant cell tumor of bone. Clin Orthop Relat Res 466:2081–2091. https://doi.org/10.1007/s11999-008-0327-z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  30. Prat J (2009) FIGO staging for uterine sarcomas. Int J Gynecol Obstet 104:177–178. https://doi.org/10.1016/j.ijgo.2008.12.008

    Article  Google Scholar 

  31. Gibbons CLMH, Sun SG, Vlychou M, Kliskey K, Lau YS, Sabokbar A, Athanasou NA (2010) Osteoclast-like cells in soft tissue leiomyosarcomas. Virchows Arch 456:317–323. https://doi.org/10.1007/s00428-010-0882-z

    Article  CAS  PubMed  Google Scholar 

  32. Tajima S, Koda K, Fukayama M (2015) Primary leiomyosarcoma of the breast with prominent osteoclastic giant cells: a case expressing receptor activator of NF-κB ligand (RANKL). Pathol Int. https://doi.org/10.1111/pin.12328

  33. Ikeda T, Seki S, Maki M, Noguchi N, Kawamura T, Arii S, Igari T, Koike M, Hirokawa K (2003) Hepatocellular carcinoma with osteoclast-like giant cells: possibility of osteoclastogenesis by hepatocyte-derived cells. Pathol Int 53:450–456. https://doi.org/10.1046/j.1440-1827.2003.01503.x

    Article  PubMed  Google Scholar 

  34. Rutkovskiy A, Stensløkken K-O, Vaage IJ (2016) Osteoblast differentiation at a glance. Med Sci Monit Basic Res 22:95–106. https://doi.org/10.12659/MSMBR.901142

    Article  PubMed  PubMed Central  Google Scholar 

  35. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, Nik-Zainal S, Martin S, McLaren S, Goody V, Robinson B, Butler A, Teague JW, Halai D, Khatri B, Myklebost O, Baumhoer D, Jundt G, Hamoudi R, Tirabosco R, Amary MF, Futreal PA, Stratton MR, Campbell PJ, Flanagan AM (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45:1479–1482. https://doi.org/10.1038/ng.2814

    Article  CAS  PubMed  Google Scholar 

  36. Amary F, Berisha F, Ye H, Gupta M, Gutteridge A, Baumhoer D, Gibbons R, Tirabosco R, O’Donnell P, Flanagan AM (2017) H3F3A (histone 3.3) G34W immunohistochemistry: a reliable marker defining benign and malignant giant cell tumor of bone. Am J Surg Pathol 41:1059–1068. https://doi.org/10.1097/PAS.0000000000000859

    Article  PubMed  PubMed Central  Google Scholar 

  37. Flanagan AM, Larousserie F, O’Donnell PG, Yoshida A (2020) Giant cell tumour of bone. In: WHO Classififcation of Tumours Editional Board (eds) Soft Tissue and Bone Tumours, WHO Classification of Tumours, 5th edn. International Agency for Research on Cancer (IARC) Publications, Lyon, pp. 440–446

  38. Cohen-Solal KA, Boregowda RK, Lasfar A (2015) RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer 14:137. https://doi.org/10.1186/s12943-015-0404-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim B, Kim H, Jung S, Moon A, Noh D-Y, Lee ZH, Kim HJ, Kim H-H (2020) A CTGF-RUNX2-RANKL axis in breast and prostate cancer cells promotes tumor progression in bone. J Bone Miner Res 35:155–166. https://doi.org/10.1002/jbmr.3869

    Article  CAS  PubMed  Google Scholar 

  40. Liu B, Liu J, Yu H, Wang C, Kong C (2020) Transcription factor RUNX2 regulates epithelial-mesenchymal transition and progression in renal cell carcinomas. Oncol Rep 43:609–616. https://doi.org/10.3892/or.2019.7428

    Article  CAS  PubMed  Google Scholar 

  41. Branstetter DG, Nelson SD, Manivel JC, Blay J-Y, Chawla S, Thomas DM, Jun S, Jacobs I (2012) Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res 18:4415–4424. https://doi.org/10.1158/1078-0432.CCR-12-0578

    Article  CAS  PubMed  Google Scholar 

  42. Molberg KH, Heffess C, Delgado R, Albores-Saavedra J (1998) Undifferentiated carcinoma with osteoclast-like giant cells of the pancreas and periampullary region. Cancer 82:1279–1287. https://doi.org/10.1002/(sici)1097-0142(19980401)82:7<1279::aid-cncr10>3.0.co;2-3

    Article  CAS  PubMed  Google Scholar 

  43. Deeken-Draisey A, Yang G-Y, Gao J, Alexiev BA (2018) Anaplastic thyroid carcinoma: an epidemiologic, histologic, immunohistochemical, and molecular single-institution study. Hum Pathol 82:140–148. https://doi.org/10.1016/j.humpath.2018.07.027

    Article  CAS  PubMed  Google Scholar 

  44. Priore SF, Schwartz LE, Epstein JI (2018) An expanded immunohistochemical profile of osteoclast-rich undifferentiated carcinoma of the urinary tract. Mod Pathol 31:984–988. https://doi.org/10.1038/s41379-018-0012-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. A. Ishikawa, Ms. M. Kataoka, and Mr. T. Arai for the expert technical assistance. We would like to thank Editage (www.editage.com) for English language editing.

Funding

This work was supported by the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (C) to Mika Terasaki (No. 17K11299).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, and data collection. Data analysis was performed by Mika Terasaki, Kyoko Wakamatsu, Naomi Kuwahara, Etsuko Toda, Yoko Endo, Shinobu Kunugi, Yusuke Kajimoto, Rieko Kawase, Keisuke Kurose, and Koichi Yoneyama. The first draft of the manuscript was written by Mika Terasaki, Yasuhiro Terasaki, and Akira Shimizu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mika Terasaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was performed according to the Declaration of Helsinki. The study protocol was reviewed and approved by the Human Ethics Review Committee of the Nippon Medical School (approval no. 30-01-1062).

Consent to participate/for publication

Informed consents were obtained from all patients for participating and publication.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 136 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terasaki, M., Terasaki, Y., Wakamatsu, K. et al. Uterine leiomyosarcomas with osteoclast-like giant cells associated with high expression of RUNX2 and RANKL. Virchows Arch 478, 893–904 (2021). https://doi.org/10.1007/s00428-020-02996-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-020-02996-1

Keywords

Navigation