Skip to main content
Log in

Effects of Cilia Movement on Fluid Velocity: I Model of Fluid Flow due to a Moving Solid in a Porous Media Framework

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Cilia, hair-like, organelles that are found in the respiratory tract (nasal cavity, pharynx, trachea, and bronchi) rhythmically beat to clear mucus from the airways. Here, we formulate a novel model of fluid flow due to the movement of cilia, and in the companion paper, Part II, the model is numerically solved under simplifying assumptions using physical data from lung bronchi. The model is based on a porous media model, modified so that instead of fluid moving through a solid porous structure, the solid moves the fluid. Two macroscale regions are considered: a porous medium and a free-fluid domain. We use hybrid mixture theory to derive the governing equations so that we have a broader understanding of the assumptions used to obtain the model. The resulting model is the classical Brinkman Stokes equations generalized to account for the movement of the cilia. The model can be used as a prototype to determine the movement of fluid due to the given movement of a solid component of a porous material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Barton, C., Raynor, S.: Analytical investigation of cilia induced mucus flow. Bull. Math. Biophys. 29, 419–428 (1967)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover, Illinois (1972)

    Google Scholar 

  • Bennethum, L.S.: Flow and deformation: understanding the assumptions and thermodynamics, updated. Preprint submitted to Elsevier Science (2006)

  • Bennethum, L.S., Cushman, J.H.: Multiphase, hybrid mixture theory for swelling systems-I: balance laws. Int. J. Eng. Sci. 34(2), 125–145 (1996)

    Article  Google Scholar 

  • Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems-I: balance laws. Int. J. Eng. Sci. 34(2), 125–145 (1996)

    Article  Google Scholar 

  • Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems-II: constitutive theory. Int. J. Eng. Sci. 34(2), 147–169 (1996)

    Article  Google Scholar 

  • Blake, J.R.: An active porous medium model for ciliary propulsion. J. Theor. Biol. 64, 697–701 (1977)

    Article  Google Scholar 

  • Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    Google Scholar 

  • Brokaw, C.J.: Bend propagation by a sliding filament model for flagella. J. Exp. Biol. 55(2), 289–304 (1971)

    Google Scholar 

  • Bruot, N., Cicuta, P.: Realizing the physics of motile cilia synchronization with driven colloids. Ann. Rev. Cond. Matter Phys. 7 (2016)

  • Chamsri, K.: Formulation of a well-posed stokes-brinkman problem with a permeability tensor. J. Math. 1, 1–7 (2015)

    Article  Google Scholar 

  • Chamsri, K., Bennethum, L.S.: Permeability of fluid flow through a periodic array of cylinders. Appl. Math. Model. 39, 244–254 (2015)

    Article  Google Scholar 

  • Chen, X., Reitich, F.: Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling. J. Math. Anal. Appl. 164, 350–362 (1992)

    Article  Google Scholar 

  • Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  Google Scholar 

  • Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  Google Scholar 

  • de Boer, R.: Theory of Porous Media. Springer, Berlin (2020)

    Google Scholar 

  • Dillon, R.H., Fauci, L.J.: An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. J. Theor. Biol. 207, 415–430 (2000)

    Article  Google Scholar 

  • Dormieux, L., Kondo, D., Ulm, Franz-Josef.: Microporomechanics. Wiley, Hoboken (2006)

    Book  Google Scholar 

  • Elgeti, J., Gompper, G.: Emergence of Metachronal Waves in Cilia Arrays. Proceed. Natl. Acad. Sci. USA 110(12), 4470–4475 (2013)

    Article  Google Scholar 

  • Friedman, A.: Free boundary problems for parabolic equations I. Melting of solids. J. Math. Mech. 8(4), 499–517 (1959)

    Google Scholar 

  • Fulford, G.R., Blake, J.R.: Muco-ciliary transport in the lung. J. Theor. Biol. 121, 381–402 (1986)

    Article  Google Scholar 

  • Gray, J., Hancock, G.: The propulsion of sea urchin spermatozoa. J. Exp. Biol. 32, 802–814 (1955)

    Google Scholar 

  • Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 1. Averaging procedure. Adv. Water Resour. 2, 131–144 (1979a)

    Article  Google Scholar 

  • Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations. Adv. Water Resour. 2, 191–203 (1979b)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: General conservation equations for multiphase systems: 2. Mass, momenta, energy, and entropy equations. Adv. Water Resour. 2, 191–208 (1979c)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: General conservation equations for multiphase systems: 3. Constitutive theory for porous media. Adv. Water Resour. 3, 25–40 (1980)

    Article  Google Scholar 

  • Hussong, J., Lindken, R., Faulhammer, P., Noreikat, K., Sharp, K.V., Kummer, W.: Cilia-driven particle and fluid transport over mucus-free mice tracheae. J. Biomech. 46, 593–598 (2013)

    Article  Google Scholar 

  • Ingram, R.: Finite element approximation of nonsolenoidal, viscous flows around porous and solid obstacles. SIAM J. Numer. Anal. 49(2), 491–520 (2011)

    Article  Google Scholar 

  • International Commission on Radiology Protection and Measurement. Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66. Annals of the ICRP, 24:1 (1994)

  • Khelloufi, M.-K., Loiseau, E., Jaeger, M., Molinari, N., Chanez, P., Gras, D., Viallat, A.: Spatiotemporal organization of cilia drives multiscale mucus swirls in model human bronchial epithelium. Sci. Rep. 8(2447) (2018)

  • Kukavica, I., Tuffaha, A., Vicol, V.: On the local existence and uniqueness for the 3D Euler equation with a free interface. Appl. Math. Optim. 76, 535–563 (2017)

    Article  Google Scholar 

  • Lighthill, J.L.: Mathematical biofluiddynamics. Regional conference series in applied mathematics. SIAM. Philadelphia, pp 45–62 (1975)

  • Lin, G., Liu, J., Mu, L., Ye, X.: Weak galerkin finite element methods for darcy flow: anisotropy and heterogeneity. J. Comput. Phys. 276, 422–437 (2014)

    Article  Google Scholar 

  • Machin, K.E.: Wave propagation along flagella. J. Exp. Biol. 35, 796–806 (1958)

    Google Scholar 

  • Mitran, S.M.: Metachronal wave formation in a model of pulmonary cilia. Comput. Struct. 85(11–14), 763–774 (2007)

    Article  Google Scholar 

  • Murad, M.A., Bennethum, L.S., Cushman, J.H.: A multi-scale theory of swelling porous media: I. Application to one-dimensional consolidation. Transp. Porous Media 19, 93–122 (1995)

    Article  Google Scholar 

  • Osterman, N., Vilfan, A.: Finding the ciliary beating pattern with optimal efficiency. Proceed. Natl. Acad. Sci. USA 108(38), 15727–15732 (2011)

    Article  Google Scholar 

  • Rubin, B.K.: Physiology of airway mucus clearance. Sci. J. Am. Assoc. Resp. Care 47(7), 761–768 (2002)

    Google Scholar 

  • Sears, P.R., Thompson, K., Knowles, M.R., Davis, C.W.: Human airway ciliary dynamics. Am. J. Physiol. Lung Cell. Mol. Physiol. 304(3), L170–L183 (2012)

    Article  Google Scholar 

  • study.com. Ciliated Epithelium: Function, Structure and Diagram home page (2019). https://study.com/academy/lesson/ciliated-epithelium-function-structure-diagram.html

  • University of Oxford Fluidics and Biocomplexity Group, Department of Engineering. The Microfluidics of Cilia Motion home page (2010). http://www.eng.ox.ac.uk/fbg/cilia.html

  • Wanner, A., Salathe, M., O’Riordan, T.G.: Mucociliary clearance in the airways. Am. J. Resp. Crit. Care Med. 154, 1868–1902 (1996)

    Article  Google Scholar 

  • Weinstein, T.F., Bennethum, L.S.: On the derivation of the transport equation for swelling porous materials with finite deformation. Int. J. Eng. Sci. (2006)

  • Weinstein, T.F.: Three-phase hybrid mixture theory for swelling drug delivery systems. PhD thesis, University of Colorado Denver (2005)

  • Wojciechowski, K.J.: Analysis and numerical solution of nonlinear volterra partial integrodifferential equations modeling swelling porous materials. PhD thesis, University of Colorado Denver (2011)

  • Wuttanachamsri, K., Schreyer, L.: Effect of cilia movement on fluid velocity: II numerical solutions over a fixed domain. Transp. Porous Media (2020). https://doi.org/10.1007/s11242-020-014554

    Article  Google Scholar 

  • Xu, L., Jiang, Y.: Cilium height difference between strokes is more effective in driving fluid transport in mucociliary clearance: a numerical study. Math. Biosci. Eng. 12(5), 1107–1126 (2015)

    Article  Google Scholar 

  • Xu, L., Jiang, Y.: Mathematical modeling of mucociliary clearance: a mini-review. Cells 8(736), 1–15 (2019)

    Google Scholar 

  • Yang, X., Dillon, R.H., Fauci, L.J.: An integrative computational model of multiciliary beating. Bull. Math. Biol. 70, 1192–1215 (2008)

    Article  Google Scholar 

  • Yano, H., Kieda, A., Mizuno, I.: The fundamental solution of brinkman’s equation in two dimensions. Fluid Dyn. Res. 7, 109–118 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanognudge Wuttanachamsri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wuttanachamsri, K., Schreyer, L. Effects of Cilia Movement on Fluid Velocity: I Model of Fluid Flow due to a Moving Solid in a Porous Media Framework. Transp Porous Med 136, 699–714 (2021). https://doi.org/10.1007/s11242-020-01539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01539-1

Keywords

Navigation