Skip to main content
Log in

Synthesis, characterization and Hirshfeld surface analysis of a mixed-ligand copper (II) coordination polymer from 1,4,8,11-tetraazacyclotetradecane and pyromellitic dianhydride

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

One pot synthesis of a new mixed-ligand coordination polymer has been carried out by combining copper salt, macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane (cyclam) and benzene-1,2,4,5-tetracarboxylic dianhydride (pyromellitic dianhydride, PMDA). The molecular composition of the synthesized complex was found to be [Cu(H2btca)2(H2O)2Cu(cyclam)]·H2O [H2btca = 1,2,4,5-benzene tetracarboxylic dianion]. The complex has been characterized by physicochemical and spectroscopic methods. Its crystallographic analysis shows two different types of Cu(II) atoms (Cu1 and Cu2) in octahedral environments. In the structure, the coordination of bidentate H2btca2− dianion with Cu1 atoms in 1,4-COO position forms a two-dimensional (2D) sheet, while the O(µ2)-axial atoms of water ligands coordinated to [Cu(cyclam)]2+ units with long Cu2-Ow bond indicates a Jahn–Teller distortion effect producing a three-dimensional (3D) network. Using the same combination of ligands (cyclam and PMDA) with nickel salt led to an already reported one dimensional (1D) polymer, viz. {[Ni(cyclam)H2btca]·2H2O}n. Hirshfeld surface analysis on H2btca2− dianion along with 2D fingerprint plots was carried out in order to have an in-depth understanding of the intermolecular interactions in the crystal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Accession codes

Crystallographic data (including structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Center. CCDC 1985181 contain the supplementary crystallographic data. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, of by email data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Center, 12 Union Road Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

References

  1. Manna SC, Okamoto KI, Zangrando E, Chaudhuri NR (2007) CrystEngComm 9:199

    Article  CAS  Google Scholar 

  2. Parmar B, Kumar Bisht K, Rachuri Y, Suresh E (2020) Inorg Chem Front 7:1082

    Article  CAS  Google Scholar 

  3. Mondal S, Dastidar P (2019) Cryst Growth Des 19:470

    Article  CAS  Google Scholar 

  4. Sun YF, Shao LW, Chen Q, Gao X, Li F, Wu CY (2019) Braz J Med Biol Res 52:e8499

    Article  Google Scholar 

  5. Lu W-G, Zhong D-C, Jiang L, Lu T-B (2012) Cryst Growth Des 12:3675

    Article  CAS  Google Scholar 

  6. Hao H-J, Liu F-J, Su H-F, Wang Z-H, Wang D-F, Huang R-B, Zheng L-S (2012) CrystEngComm 14:6726

    Article  CAS  Google Scholar 

  7. Tabatabaee M, Mohammadinasab R, Aghaie M (2016) J Inorg Organomet Polym 26:127

    Article  CAS  Google Scholar 

  8. Yu X-Y, Lu J, Yu J-H, Zhang X, Xu J-Q, Wang TG (2007) Z Anorg Allg Chem 633:490

    Article  CAS  Google Scholar 

  9. Yu X-Y, Cui X-B, Zhang X, Jin L, Luo Y-N, Yang J-J, Zhang H, Zhao X (2011) Inorg Chem Commun 14:848

    Article  CAS  Google Scholar 

  10. Cao R, Sun D, Liang Y, Hong M, Tatsumi K, Shi Q (2002) Inorg Chem 41:2087

    Article  CAS  Google Scholar 

  11. Jiang YS, Yu ZT, Liao ZL, Li GH, Chen JS (2006) Polyhedron 25:1359

    Article  CAS  Google Scholar 

  12. Shi Q, Cao R, Sun D-F, Hong M-C, Liang Y-C (2001) Polyhedron 20:3287

    Article  CAS  Google Scholar 

  13. Rochon FD, Massarweh G (2000) Inorganica Chim Acta 304:190

    Article  CAS  Google Scholar 

  14. Ganesan SV, Natarajan S (2004) Inorg Chem 43:198

    Article  CAS  Google Scholar 

  15. Wang Y-B, Zhuang W-J, Jin L-P, Lu S-Z (2005) J Mol Struct 737:165

    Article  CAS  Google Scholar 

  16. Zhong D-C, Guo H-B, Deng J-H, Chen Q, Luo X-Z (2015) CrystEngComm 17:3519

    Article  CAS  Google Scholar 

  17. Peresypkina EV, Samsonenko DG, Vostrikova KE (2015) J Solid State Chem 224:107

    Article  CAS  Google Scholar 

  18. Kim JC, Lough AJ, Kim H (2002) Inorg Chem Commun 5:771

    Article  CAS  Google Scholar 

  19. Kim JC, Jo H, Lough AJ, Cho J, Lee U, Pyun SY (2003) Inorg Chem Commun 6:474

    Article  CAS  Google Scholar 

  20. Kim JC, Kim JA, Kang YC, Lough AJ, Lee BM (2006) Transit Met Chem 31:829

    Article  CAS  Google Scholar 

  21. Zakaria CM, Ferguson G, Lough AJ, Glidewella C (2002) Acta Cryst B58:78

    Article  CAS  Google Scholar 

  22. Jo H, Lough AJ, Kim JC (2005) Inorganica Chim Acta 358:1274

    Article  CAS  Google Scholar 

  23. Sheldrick GM (2015) Acta Cryst A71:3–8

    Google Scholar 

  24. Sheldrick GM (2015) Acta Cryst C71:3–8

    Google Scholar 

  25. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) CrystalExplorer, University of Western Australia, Version 3.1

  26. White VA, Johnstone RDL, McCall KL, Long NJ, Slawin AMZ, Robertson N (2007) Dalton Trans. 2942

  27. Blatov VA, Shevchenko AP, Proserpio DM (2014) Cryst Growth Des 14:3576

    Article  CAS  Google Scholar 

  28. Luo Y, Bernot K, Calvez G, Freslon S, Daiguebonne C, Guillou O, Kerbellec N, Roisnelac T (2013) CrystEngComm 15:1882

    Article  CAS  Google Scholar 

  29. Bosnich B, Poon CK, Tobe ML (1965) Inorg Chem 4:1102

    Article  CAS  Google Scholar 

  30. Bakaj M, Zimmer M (1999) J Mol Struct 508:59

    Article  CAS  Google Scholar 

  31. Niels-Patrick P (2019) Crystals 9:615

    Article  Google Scholar 

  32. Farid NN, Jonathan C, Ali NK, Abel MM, Rizvan KA, Khammed AA, Ibrahim GM, Khaver SS, Alejandro C, Ivan B (2020) Molecules 25:2235

    Article  Google Scholar 

  33. Abdullah N, Said SM, Halid YY, Muhammad M, Hasnan IM, Sharmin N, Hussin SAM, Jazli NM, Ibrahim N, Nordin AR, Safiin NA, Anuar NS (2016) J Coord Chem 69:2954

    Article  CAS  Google Scholar 

  34. Choi HS, Suh MP (2009) Angew Chem Int Ed 48:6865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Natural Sciences and Engineering Research Council of Canada (RGPIN-2015-06425), the Fonds de Recherche du Québec – Nature et Technologie, the Canada Foundation for Innovation, the Canadian Queen Elizabeth II Diamond Jubilee Scholarships, Mitacs and the Université du Québec à Trois-Rivières for financial supports.

Funding

The authors have mentioned all the funding agencies associated with this research in the acknowledgement section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Duong.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Below is the link to the electronic supplementary material.

11243_2020_444_MOESM1_ESM.pdf

Supporting Information. IR spectra of 1, cyclam and PMDA. TGA/DTA curves of 1. Crystallographic Tables of 1 (PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dissem, N., Kaur, P., Rana, L.K. et al. Synthesis, characterization and Hirshfeld surface analysis of a mixed-ligand copper (II) coordination polymer from 1,4,8,11-tetraazacyclotetradecane and pyromellitic dianhydride. Transit Met Chem 46, 283–290 (2021). https://doi.org/10.1007/s11243-020-00444-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00444-2

Navigation