Skip to main content
Log in

Studying multi-nucleon transfer reaction in a recoil mass spectrometer

A numerical simulation using Monte Carlo techniques

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We present simulation of a recoil mass spectrometer for measurement of multi-nucleon transfer reactions, based on Monte Carlo techniques. Target-like ions are generated event by event and transported to the focal plane of the spectrometer by the method of transfer matrices. Measured focal plane spectra for the elastic and six transfer channels of the reaction \(^{28}\)Si+\(^{94}\)Zr are reproduced at two projectile energies near the Coulomb barrier. Excellent reproduction is achieved even with first-order ion-optical calculations, indicating not so significant role of higher order aberrations in conventional recoil separators with smaller acceptance. This is in striking contrast with the large acceptance magnetic separators used for studying transfer reactions, for which complex trajectory reconstruction algorithms involving higher order aberrations are essential. Transmission efficiency of the spectrometer, calculated by the reported code, is crucial to convert measured transfer probabilities to differential and integral transfer cross sections for each channel. We show effectiveness of the proposed methodology by extracting differential elastic scattering cross sections from measured yields for the reaction \(^{28}\)Si+\(^{94}\)Zr. Besides being useful for other recoil mass spectrometers, our methodology can be employed for measurement of quasi-elastic reaction cross sections in velocity filters and gas-filled separators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no new experimental data have been listed.]

References

  1. K.E. Rehm, Quasi-elastic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 41, 429 (1991)

    Article  ADS  Google Scholar 

  2. S.T. Butler, Angular dstributions from (d, p) and (d, n) nuclear reactions. Proc. R. Soc. Lond. A 208, 559 (1951)

    Article  ADS  MATH  Google Scholar 

  3. B.L. Cohen, O.B. Chubinsky, Nuclear structure studies in the zirconium isotopes with (d, p) and (d, t) reactions. Phys. Rev. 131, 5 (1963)

  4. C.R. Bingham, M.L. Halbert, Neutron shell structure in \(^{91}\)Zr and \(^{92}\)Zr by (d, p) and (n,\(^{3}\)He) reactions. Phys. Rev. C 2, 6 (1970)

    Google Scholar 

  5. J.B. Ball, O. Hansen, J.S. Larsen, D. Sinclair, F. Videbaek, \(^{16}\)O induced one-nucleon transfer reactions on targets of \(^{26}\)Mg, \(^{27}\)Al, \(^{30}\)Si and \(^{48}\)Ca. Nucl. Phys. A 244(2), 341 (1975)

  6. N.J. Davis, J.M. Nelson, A study of the \(^{29,30}\)Si(d, p)\(^{30,31}\)Si reactions using a polarised beam. Nucl. Phys. A 648, 357 (1987)

    Article  ADS  Google Scholar 

  7. L. Corradi, G. Pollarolo, S. Szilner, Multinucleon transfer processes in heavy-ion reactions. J. Phys. G: Nucl. Part. Phys. 36, 113101 (2009)

    Article  ADS  Google Scholar 

  8. C.Y. Wu, W. von Oertzen, D. Cline, M.W. Guidry, Pairing correlations and two-nucleon transfer between heavy nuclei. Annu. Rev. Nucl. Part. Sci. 40, 285 (1990)

    Article  ADS  Google Scholar 

  9. M. Igarashi, K. Kubo, K. Yagi, Two-nucleon transfer mechanisms. Phys. Rep. 199, 1 (1991)

    Article  ADS  Google Scholar 

  10. W. von Oertzen, A. Vitturi, Pairing correlations of nucleons and multi-nucleon transfer between heavy nuclei. Rep. Prog. Phys. 64, 1247 (2001)

    Article  ADS  Google Scholar 

  11. F. Cappuzzello, D. Carbone, M. Cavallaro, M. Bondì, C. Agodi, F. Azaiez, A. Bonaccorso, A. Cunsolo, L. Fortunato, A. Foti, S. Franchoo, E. Khan, R. Linares, J. Lubian, J.A. Scarpaci, A. Vitturi, Signatures of the Giant Pairing Vibration in the \(^{14}\)C and \(^{15}\)C atomic nuclei. Nat. Commun. 6, 6743 (2015)

    Article  ADS  Google Scholar 

  12. S. Szilner, L. Corradi, D. Montanari, T. Mijatović, G. Pollarolo, E. Fioretto, A. Goasduff, D. Jelavić Malenica, D. Mengoni, G. Montagnoli, F. Scarlassara, N. Soić, A.M. Stefanini, J.J. Valiente-Dobón, Nucleon-nucleon correlations probed at far sub-Coulomb energies. EPJ Web Conf. 163, 00058 (2017)

    Article  Google Scholar 

  13. M. Schädel, W. Brüchle, H. Gäggler, J.V. Kratz, K. Sümmerer, G. Wirth, G. Hermann, R. Stakemann, G. Tittel, N. Trautmann, J.M. Nitschke, E.K. Hulet, R.W. Lougheed, R.L. Han, R.L. Ferguson, Actinide production in collisions of \(^{238}\)U with \(^{248}\text{ Cm }\). Phys. Rev. Lett. 48, 852 (1982)

    Article  ADS  Google Scholar 

  14. V. Zagrebaev, W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer reactions. Phys. Rev. Lett. 101, 122701 (2008)

  15. G.G. Adamian, N.V. Antonenko, V.V. Sargsyan, W. Scheid, Predicted yields of new neutron rich isotopes of nuclei with Z\(=\)64–80 in the multinucleon transfer reaction \(^{48}\text{ Ca }+^{238}\text{ U }\). Phys. Rev. C 81, 057602 (2010)

  16. Y.X. Watanabe, Y.H. Kim, S.C. Jeong, Y. Hirayama, N. Imai, H. Ishiyama, H.S. Jung, H. Miyatake, S. Choi, J.S. Song, E. Clement, G. de France, A. Navin, M. Rejmund, C. Schmitt, G. Pollarolo, L. Corradi, E. Fioretto, D. Montanari, M. Niikura, D. Suzuki, H. Nishibata, J. Takatsu, Pathway for the production of neutron-rich isotopes around the N = 126 shell closure. Phys. Rev. Lett. 115, 172503 (2015)

    Article  ADS  Google Scholar 

  17. A. Vogt, B. Birkenbach, P. Reiter, L. Corradi, T. Mijatović, D. Montanari, S. Szilner, D. Bazzacco, M. Bowry, A. Bracco, B. Bruyneel, F.C.L. Crespi, G. de Angelis, P. Désesquelles, J. Eberth, E. Farnea, E. Fioretto, A. Gadea, K. Geibel, A. Gengelbach, A. Giaz, A. Görgen, A. Gottardo, J. Grebosz, H. Hess, P.R. John, J. Jolie, D.S. Judson, A. Jungclaus, W. Korten, S. Leoni, S. Lunardi, R. Menegazzo, D. Mengoni, C. Michelagnoli, G. Montagnoli, D. Napoli, L. Pellegri, G. Pollarolo, A. Pullia, B. Quintana, F. Radeck, F. Recchia, D. Rosso, E. Şahin, M.D. Salsac, F. Scarlassara, P.-A. Söderström, A.M. Stefanini, T. Steinbach, O. Stezowski, B. Szpak, Ch. Theisen, C. Ur, J.J. Valiente-Dobón, V. Vandone, A. Wiens, Light and heavy transfer products in \(^{136}\text{ Xe }+^{238}\text{ U }\) multinucleon transfer reactions. Phys. Rev. C 92, 024619 (2015)

    Article  ADS  Google Scholar 

  18. M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Measuring barriers to fusion. Annu. Rev. Nucl. Part. Sci. 48, 401 (1998)

    Article  ADS  Google Scholar 

  19. M. Beckerman, M. Salomaa, A. Sperduto, H. Enge, J. Ball, A. DiRienzo, S. Gazes, Y. Chen, J.D. Molitoris, M. Nai-feng, Dynamic influence of valence neutrons upon the complete fusion of massive nuclei. Phys. Rev. Lett. 45, 1472 (1980)

    Article  ADS  Google Scholar 

  20. R.A. Broglia, C.H. Dasso, S. Landowne, A. Winther, Possible effect of transfer reactions on heavy ion fusion at sub-barrier energies. Phys. Rev. C 27, 2433(R) (1983)

    Article  ADS  Google Scholar 

  21. W. Henning, F.L.H. Wolfs, J.P. Schiffer, K.E. Rehm, Subbarrier nucleon transfer: doorway to heavy-ion fusion. Phys. Rev. Lett. 58, 318 (1987)

    Article  ADS  Google Scholar 

  22. P.H. Stelson, H.J. Kim, M. Beckerman, D. Shapira, R.L. Robinson, Fusion cross sections for \(^{46,50}\text{ Ti }+^{90}\text{ Zr },^{93}\text{ Nb }\) and some systematics of heavy-ion fusion at barrier and sub-barrier energies. Phys. Rev. C 41, 1584 (1990)

    Article  ADS  Google Scholar 

  23. C.L. Jiang, H. Esbensen, K.E. Rehm, B.B. Back, R.V.F. Janssens, J.A. Caggiano, P. Collon, J. Greene, A.M. Heinz, D.J. Henderson, I. Nishinaka, T.O. Pennington, D. Seweryniak, Unexpected behavior of heavy-ion fusion cross sections at extreme sub-barrier energies. Phys. Rev. Lett. 89, 052701 (2002)

    Article  ADS  Google Scholar 

  24. A.M. Stefanini, F. Scarlassara, S. Beghini, G. Montagnoli, R. Silvestri, M. Trotta, B.R. Behera, L. Corradi, E. Fioretto, A. Gadea, Y.W. Wu, S. Szilner, H.Q. Zhang, Z.H. Liu, M. Ruan, F. Yang, N. Rowley, Fusion of \(^{48}\text{ Ca }+^{90,96}\text{ Zr }\) above and below the Coulomb barrier. Phys. Rev. C 73, 034606 (2006)

    Article  ADS  Google Scholar 

  25. A.M. Stefanini, B.R. Behera, S. Beghini, L. Corradi, E. Fioretto, A. Gadea, G. Montagnoli, N. Rowley, F. Scarlassara, S. Szilner, M. Trotta, Sub-barrier fusion of \(^{40}\)Ca+\(^{94}\)Zr: Interplay of phonon and transfer couplings. Phys. Rev. C 76, 014610 (2007)

    Article  ADS  Google Scholar 

  26. H.A. Enge, Magnetic spectrographs for nuclear reaction studies. Nucl. Instrum. Methods 162, 161 (1979)

  27. H. Savajols, the VAMOS Collaboration, VAMOS: a VAriable MOde high acceptance spectrometer. Nucl. Phys. A 654, 1027c (1999)

    Article  ADS  Google Scholar 

  28. M. Rejmund, B. Lecornu, A. Navin, C. Schmitt, S. Damoy, O. Delaune, J.M. Enguerrand, G. Fremont, P. Gangnant, L. Gaudefroy, B. Jacquot, J. Pancin, S. Pullanhiotan, C. Spitaels, Performance of the improved larger acceptance spectrometer: VAMOS++. Nucl. Instrum. Methods Phys. Res. Sect. A 646, 184 (2011)

    Article  ADS  Google Scholar 

  29. A.M. Stefanini, L. Corradi, G. Maron, A. Pisent, M. Trotta, A.M. Vinodkumar, S. Beghini, G. Montagnoli, F. Scarlassara, G.F. Segato, A. De Rosa, G. Inglima, D. Pierroutsakou, M. Romoli, M. Sandoli, G. Pollarolo, A. Latina, The heavy-ion magnetic spectrometer PRISMA. Nucl. Phys. A 701, 217c (2002)

    Article  Google Scholar 

  30. A. Latina, A.M. Stefanini, S. Beghini, B.R. Behera, L. Corradi, G. De Angelis, A. De Rosa, E. Fioretto, A. Gadea, M. Gulmini, G. Inglima, M. LaCommara, G. Maron, R. Menegazzo, N. Marginean, G. Montagnoli, D.R. Napoli, D. Pierroutsakou, G. Pollarolo, M. Romoli, M. Sandoli, F. Scarlassara, S. Szilner, N. Toniolo, M. Trotta, Y.W. Wu, PRISMA -a magnetic spectrometer for heavy ions at LNL. Nucl. Phys. A 734, E1 (2004)

    Article  Google Scholar 

  31. A. Cunsolo, F. Cappuzzello, A. Foti, A. Lazzaro, A.L. Melita, C. Nociforo, V. Shchepunov, J.S. Winfield, Technique for 1st order design of a large-acceptance magnetic spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A 481, 48 (2002)

    Article  ADS  Google Scholar 

  32. A. Cunsolo, F. Cappuzzello, A. Foti, A. Lazzaro, A.L. Melita, C. Nociforo, V. Shchepunov, J.S. Winfield, Ion optics for large-acceptance magnetic spectrometers: application to the MAGNEX spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A 484, 56 (2002)

    Article  ADS  Google Scholar 

  33. M. Cavallaro, F. Cappuzzello, A. Cunsolo, A. Foti, D. Carbone, The MAGNEX large acceptance spectrometer. AIP Conf. Proc. 1213, 198 (2010)

    Article  ADS  Google Scholar 

  34. F. Cappuzzello, C. Agodi, D. Carbone, M. Cavallaroi, The MAGNEX spectrometer: results and perspectives. Eur. Phys. J. A 52, 167 (2016)

    Article  ADS  Google Scholar 

  35. D. Bazzacco, AGATA Collaboration, The advanced gamma ray tracking array AGATA. Nucl. Phys. A 746, 248c (2004)

  36. A. Gadea, D.R. Napoli, G. de Angelis, R. Menegazzo, A.M. Stefanini, L. Corradi, M. Axiotis, L. Berti, E. Fioretto, T. Kroell, A. Latina, N. Marginean, G. Maron, T. Martinez, D. Rosso, C. Rusu, N. Toniolo, S. Szilner, M. Trotta, D. Bazzacco, S. Beghini, M. Bellato, F. Brandolini, E. Farnea, R. Isocrate, S.M. Lenzi, S. Lunardi, G. Montagnoli, P. Pavan, C. Rossi Alvarez, F. Scarlassara, C. Ur, N. Blasi, A. Bracco, F. Camera, S. Leoni, B. Million, M. Pignanelli, G. Pollarolo, A. DeRosa, G. Inglima, M. La Commara, G. La Rana, D. Pierroutsakou, M. Romoli, M. Sandoli, P.G. Bizzeti, A.M. Bizzeti-Sona, G. Lo Bianco, C.M. Petrache, A. Zucchiatti, P. Cocconi, B. Quintana, Ch. Beck, D. Curien, G. Duchêne, F. Haas, P. Medina, P. Papka, J. Durell, S.J. Freeman, A. Smith, B. Varley, K. Fayz, V. Pucknell, J. Simpson, W. Gelletly, P. Regan, the EUROBALL Collaboration and the PRISMA-2 Collaboration, Coupling a CLOVER detector array with the PRISMA magnetic spectrometer. Eur. Phys. J. A 20, 193 (2004)

    Article  Google Scholar 

  37. F. Azeiz, EXOGAM: a \(\gamma \)-ray spectrometer for radioactive beams. Nucl. Phys. A 654, 1003c (1999)

    Article  ADS  Google Scholar 

  38. J. Dvorak, M. Block, C.E. Dullmann, S. Heinz, R.-D. Herzberg, M. Schädel, IRiS -Exploring new frontiers in neutron-rich isotopes of the heaviest elements with a new Inelastic Reaction Isotope Separator. Nucl. Instrum. Methods Phys. Res. Sect. A Nucl. Instrum. Methods Phys. Res., Sect. A 652, 687 (2011)

  39. R.R. Betts, P.M. Evans, C.N. Pass, N. Poffé, A.E. Smith, L. Stuttgé, J.S. Lilley, D.W. Banes, K.A. Connell, J. Simpson, J.R.H. Smith, A.N. James, B.R. Fulton, Measurement of sub-barrier transfer reactions for \(^{58}\text{ Ni+Sn }\) using a recoil mass separator. Phys. Rev. Lett. 59, 978 (1987)

    Article  ADS  Google Scholar 

  40. C.N. Pass, P.M. Evans, A.E. Smith, L. Stuttgé, R.R. Betts, J.S. Lilley, D.W. Banes, K.A. Connell, J. Simpson, J.R. Smith, A.N. James, B.R. Fulton, Study of neutron transfer reactions at sub-Coulomb energies using a recoil separator. Nucl. Phys. A 499, 173 (1989)

    Article  ADS  Google Scholar 

  41. A.N. James, T.P. Morrison, K.L. Ying, K.A. Connell, H.G. Price, J. Simpson, Microsecond mass separation of heavy compound nucleus residues using the Daresbury recoil separator. Nucl. Instrum. Methods Phys. Res. Sect. A 267, 144 (1988)

  42. D.R. Napoli, A.M. Stefanini, H. Moreno Gonzalez, B. Million, G. Prete, P. Spolaore, M. Narayanasamy, Z.C. Li, S. Beghini, G. Montagnoli, F. Scarlassara, G.F. Segato, C. Signorini, F. Soramel, G. Pollarolo, A. Rapisarda, Sub-barrier transfer reactions of \(^{32}\text{ S }+^{64}\text{ Ni }\). Nucl. Phys. A 559, 443 (1993)

    Article  ADS  Google Scholar 

  43. R.B. Roberts, S.B. Gazes, J.E. Mason, M. Satteson, S.G. Teichmann, L.L. Lee Jr., J.F. Liang, J.C. Mahon, R.J. Vojtech, Sub-barrier one- and two-neutron pickup measurements in \(^{32}\text{ S }+^{93}\text{ Nb }\),\(^{98,100}\text{ Mo }\) reactions at 180\(^\circ \). Phys. Rev. C 47, R1831 (1993)

  44. A.K. Sinha, N. Madhavan, J.J. Das, P. Sugathan, D.O. Kataria, A.P. Patro, G.K. Mehta, Heavy ion reaction analyzer (HIRA): a recoil mass separator facility at NSC. Nucl. Instrum. Methods Phys. Res. Sect. A 339, 543 (1994)

    Article  ADS  Google Scholar 

  45. S. Nath, A Monte Carlo code to calculate transmission efficiency of HIRA. Nucl. Instrum. Methods Phys. Res. Sect. A 576, 403 (2007)

    Article  ADS  Google Scholar 

  46. D.O. Kataria, A.K. Sinha, J.J. Das, N. Madhavan, P. Sugathan, L.T. Baby, I. Mazumdar, R. Singh, C.V.K. Baba, Y.K. Agarwal, A.M. Vinodkumar, K.M. Varier, One- and two-nucleon transfer in the \(^{28}\text{ Si }+^{68}\text{ Zn }\) system at energies below the Coulomb barrier. Phys. Rev. C 56, 1902 (1997)

    Article  ADS  Google Scholar 

  47. V. Tripathi, L.T. Baby, P.V. Madhusudhana Rao, S.K. Hui, R. Singh, J.J. Das, P. Sugathan, N. Madhavan, A.K. Sinha, Measurement of the ground state 2n pickup probability for \(^{28}\text{ Si }+^{68}\text{ Zn }\) and its role in sub-barrier fusion enhancement. Pramana –J. Phys 53, 535 (1999)

  48. L.T. Baby, V. Tripathi, D.O. Kataria, J.J. Das, P. Sugathan, N. Madhavan, A.K. Sinha, M.C. Radhakrishna, N.M. Badiger, N.G. Puttaswamy, A.M. Vinodkumar, N.V.S.V. Prasad, Transfer and higher-order phonon coupling effects in the sub-barrier fusion of \(^{28}\)Si and \(^{93}\)Nb. Phys. Rev. C 56, 1936 (1997)

  49. A. K. Sinha in collaboration with L. T. Baby, N. Badiger, J.J. Das, S.K. Hui, D.O. Kataria, R.G. Kulkarni, N. Madhavan, P.V. Madhusudhana Rao, I. Majumdar, M.C. Radhakrishna, N.V.S.V. Prasad, N.G. Puttaswamy, P. Shakeeb, R. Singh, D.L. Shastry, P. Sugathan, V. Tripathi, K.M. Varier, A.M. Vinodkumar, Sub-barrier few-nucleon transfer reaction and channel coupling effects in heavy ion fusion. J. Phys. G: Nucl. Part. Phys. 23, 1331 (1997)

  50. K.M. Varier, A.M. Vinodkumar, N.V.S.V. Prasad, P.V. Madhusudhana Rao, D.L. Sastry, L.T. Baby, M.C. Radhakrishna, N.G. Puttaswamy, J.J. Das, P. Sugathan, N. Madhavan, A.K. Sinha, D.O. Kataria, Transfer measurements for the Ti + Ni systems at near barrier energies. Pramana - J. Phys. 53, 529 (1999)

    Article  ADS  Google Scholar 

  51. S. Kalkal, S. Mandal, N. Madhavan, A. Jhingan, E. Prasad, R. Sandal, S. Nath, J. Gehlot, R. Garg, G. Mohanto, M. Saxena, S. Goyal, S. Verma, B.R. Behera, S. Kumar, U.D. Pramanik, A.K. Sinha, Multinucleon transfer reactions for the \(^{28}\)Si+\(^{90,94}\)Zr systems in the region below and near the Coulomb barrier. Phys. Rev. C 83, 054607 (2011)

    Article  ADS  Google Scholar 

  52. G. Münzenberg, W. Faust, S. Hofmann, P. Armbruster, K. Güttner, H. Ewald, The velocity filter SHIP, a separator of unslowed heavy ion fusion products. Nucl. Instrum. Methods 161, 65 (1979)

    Article  ADS  Google Scholar 

  53. K. Morita, A. Yoshida, T.T. Inamura, M. Koizumi, T. Nomura, M. Fujioka, T. Shinozuka, H. Miyatake, K. Sueki, H. Kudo, Y. Nagai, T. Toriyama, K. Yoshimura, Y. Hatsukawa, RIKEN isotope separator on-line GARIS/IGISOL. Nucl. Instrum. Methods Phys. Res. Sect. B 70, 220 (1992)

  54. V.F. Comas, S. Heinz, S. Hofmann, D. Ackermann, J.A. Heredia, F.P. Heßberger, J. Khuyagbaatar, B. Kindler, B. Lommel, R. Mann, Study of multi-nucleon transfer reactions \(^{58,64}\)Ni+\(^{207}\)Pb collisions at the velocity filter SHIP. Eur. Phys. J. A 49, 112 (2013)

    Article  ADS  Google Scholar 

  55. H.M. Devaraja, S. Heinz, O. Beliuskina, V. Comas, S. Hofmann, C. Hornung, G. Münzenberg, K. Nishio, D. Ackermann, Y.K. Gambhir, M. Gupta, R.A. Henderson, F.P. Heßberger, J. Khuyagbaatar, B. Kindler, B. Lommel, K.J. Moody, J. Maurer, R. Mann, A.G. Popeko, D.A. Shaughnessy, M.A. Stoyer, A.V. Yeremin, Observation of new neutron-deficient isotopes with Z \(\ge \) 92 in multinucleon transfer reactions. Phys. Lett. B 748, 199 (2015)

    Article  ADS  Google Scholar 

  56. S. Heinz, H.M. Devaraja, O. Beliuskina, V. Comas, S. Hofmann, C. Hornung, G. Müunzenberg, D. Ackermann, M. Gupta, R.A. Henderson, F.P. Heßberger, B. Kindler, B. Lommel, R. Mann, J. Maurer, K.J. Moody, K. Nishio, A.G. Popeko, D.A. Shaughnessy, M.A. Stoyer, A.V. Yeremin, Synthesis of new transuranium isotopes in multinucleon transfer reactions using a velocity filter. Eur. Phys. J. A 52, 278 (2016)

    Article  ADS  Google Scholar 

  57. H.M. Devaraja, S. Heinz, O. Beliuskina, S. Hofmann, C. Hornung, G. Münzenberg, D. Ackermann, M. Gupta, Y.K. Gambhir, R.A. Henderson, F.P. Heßberger, A.V. Yeremin, B. Kindler, B. Lommel, J. Maurer, K.J. Moody, K. Nishio, A.G. Popeko, M.A. Stoyer, D.A. Shaughnessy, Population of nuclides with Z \(\ge \) 98 in multi-nucleon transfer reactions of \(^{48}\)Ca+\(^{248}\)Cm. Eur. Phys. J. A 55, 25 (2019)

  58. T. Tanaka, Y. Narikiyo, K. Morita, K. Fujita, D. Kaji, K. Morimoto, S. Yamaki, Y. Wakabayashi, K. Tanaka, M. Takeyama, A. Yoneda, H. Haba, Y. Komori, S. Yanou, B.J.-P. Gall, Z. Asfari, H. Faure, H. Hasebe, M. Huang, J. Kanaya, M. Murakami, A. Yoshida, T. Yamaguchi, F. Tokanai, T. Yoshida, S. Yamamoto, Y. Yamano, K. Watanabe, S. Ishizawa, M. Asai, R. Aono, S. Goto, K. Katori, K. Hagino, Determination of fusion barrier distributions from quasielastic scattering cross sections towards superheavy nuclei synthesis. J. Phys. Soc. Jpn. 87, 014201 (2018)

    Article  ADS  Google Scholar 

  59. T. Tanaka, K. Morita, K. Morimoto, D. Kaji, H. Haba, R.A. Boll, N.T. Brewer, S. Van Cleve, D.J. Dean, S. Ishizawa, Y. Ito, Y. Komori, K. Nishio, T. Niwase, B.C. Rasco, J.B. Roberto, K.P. Rykaczewski, H. Sakai, D.W. Stracener, K. Hagino, Study of quasielastic barrier distributions as a step towards the synthesis of superheavy elements with hot fusion reactions. Phys. Rev. Lett. 124, 052502 (2020)

    Article  ADS  Google Scholar 

  60. S. Pullanhiotan, M. Rejmund, A. Navin, W. Mittig, Performance of VAMOS for reactions near the Coulomb barrier. Nucl. Instrum. Methods Phys. Res. Sect. A 593, 343 (2008)

    Article  ADS  Google Scholar 

  61. S. Pullanhiotan, A. Chatterjee, B. Jacquot, A. Navin, M. Rejmund, Improvement in the reconstruction method for VAMOS spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4148 (2008)

    Article  ADS  Google Scholar 

  62. M. Cavallaro, F. Cappuzzello, D. Carbone, A. Cunsolo, A. Foti, R. Linares, Transport efficiency in large acceptance spectrometers. Nucl. Instrum. Methods Phys. Res. Sect. A 637, 77 (2011)

    Article  ADS  Google Scholar 

  63. D. Montanari, E. Farnea, S. Leoni, G. Pollarolo, L. Corradi, G. Benzoni, A. Gadea, E. Fioretto, A. Latina, G. Montagnoli, F. Scarlassara, A.M. Stefanini, S. Szilner, Response function of the magnetic spectrometer PRISMA. Eur. Phys. J. A 47, 4 (2011)

    Article  ADS  Google Scholar 

  64. T. Mijatović, S. Szilner, L. Corradi, D. Montanari, G. Pollarolo, E. Fioretto, E. Fioretto, A. Gadea, A. Goasduff, D. Jelavić Malenica, N. Mărginean, G. Montagnoli, F. Scarlassara, N. Soić, A.M. Stefanini, C.A. Ur, J.J. Valiente-Dobón, Study of the cross section determination with the PRISMA spectrometer: the \(^{40}\)Ar+\(^{208}\)Pb case. Eur. Phys. J. A 52, 113 (2016)

  65. R. Biswas, S. Nath, Simulation of a recoil mass spectrometer for measurement of differential quasi-elastic scattering cross sections. Eur. Phys. Jour. A 56, 1 (2020)

    Article  ADS  Google Scholar 

  66. http://www.astro.caltech.edu/~tjp/pgplot/

  67. S. Kalkal, S.R. Abhilash, D. Kabiraj, S. Mandal, N. Madhavan, R. Singh, Fabrication of \(^{90,94}\)Zr targets on carbon backing. Nucl. Instrum. Methods Phys. Res. Sect. A 613, 190 (2010)

    Article  ADS  Google Scholar 

  68. K. Hagino, N. Takigawa, Subbarrier fusion reactions and many-particle quantum tunneling. Prog. Theor. Phys. 128, 1061 (2012)

    Article  ADS  Google Scholar 

  69. S. Kalkal, S. Mandal, A. Jhingan, J. Gehlot, P. Sugathan, K.S. Golda, N. Madhavan, R. Garg, S. Goyal, G. Mohanto, R. Sandal, S. Chakraborty, S. Verma, B. Behera, G. Eleonora, H.J. Wollersheim, R. Singh, Measurements and coupled reaction channels analysis of one- and two-proton transfer reactions for the \(^{28}\)Si+\(^{90,94}\)Zr systems. Phys. Rev. C 85, 034606 (2012)

    Article  ADS  Google Scholar 

  70. S. Biswas, A. Chakraborty, A. Jhingan, D. Arora, B.R. Behera, R. Biswas, N.K. Deb, S.S. Ghugre, P.K. Giri, K.S. Golda, G. Kaur, A. Kumar, M. Kumar, B. Mukherjee, B.K. Nayak, A. Parihari, N.K. Rai, S. Rai, R. Raut, R.N. Sahoo, A.K. Sinha, Quasielastic scattering measurements in the \(^{28}\)Si+\(^{142,150}\)Nd systems. Phys. Rev. C 102, 014613 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (R. B.) acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi for financial support via Grant No. CSIR/09/760(0030)/2017-EMR-I. The authors are thankful to Dr. Taiki Tanaka for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nath.

Additional information

Communicated by Jose Benlliure.

Formalism for extraction of differential quasi-elastic scattering cross sections from measured yields in an RMS

Formalism for extraction of differential quasi-elastic scattering cross sections from measured yields in an RMS

We consider measurement of differential quasi-elastic scattering cross section using a recoil mass spectrometer (RMS) like the HIRA. In the experiment, the target-like ions, moving in the forward direction (in the laboratory frame of reference) are detected in the focal plane (FP) of the RMS, instead of detecting the projectile-like ions in the backward direction. Two monitor detectors are used to detect elastically-scattered projectiles for absolute normalization of cross sections. We also assume that both projectile-like and target-like ions are recorded simultaneously for a duration t.

Yield of projectile-like ions recorded by the normalization detector (placed at an angle, say, \(\theta _{\text {norm}}\) in the centre of mass (c.m.) frame of reference) is given by

$$\begin{aligned} Y^{\text {Ruth}}_{\text {norm}} = \left( \frac{d\sigma }{d\varOmega }\right) ^{\text {Ruth}}_{\theta _{\text {norm}}}\ . \ \varOmega _{\text {norm}}\ .\ i\ .\ d.\ t \end{aligned}$$
(A.1)

where \(\varOmega _{\text {norm}}\), i and d are acceptance of the normalization detector, beam intensity and thickness of the target, respectively. The differential Rutherford scattering cross section at an angle \(\theta _{\text {c.m.}}\) (in units of mb/sr) is computed by the well-known relation

$$\begin{aligned} \left( \frac{d\sigma }{d\varOmega }\right) ^{\text {Ruth}}_{\theta _{\text {c.m.}}} = 1.296\ .\ \left( \frac{Z_{\text {p}}Z_{\text {t}}}{E_{\text {c.m.}}}\right) ^{2} \ .\ \frac{1}{\sin ^{4}\frac{\theta _{\text {c.m.}}}{2}}\ . \end{aligned}$$
(A.2)

Here, \(E_{\text {c.m.}}\) is the energy available for collision in the c.m. frame of reference and \(Z_{\text {p}}\) and \(Z_{\text {t}}\) are the atomic numbers of projectile and target nuclei, respectively.

In the c.m. frame of reference, projectile-like and target-like ions fly \(180^{\circ }\) apart from each other. We further assume here that the measurement is carried out at an incident energy sufficiently below the Coulomb barrier, so that all scattering events can be described by Rutherford scattering (i.e. by Eq. A.2). With this assumption, the yield of target-like ions, recorded at the FP of the RMS (operated at an angle, say, \(\theta _{\text {RMS}}\) in the c.m. frame of reference) can be described by the relation

$$\begin{aligned} Y^{\text {Ruth}}_{\text {RMS}} = \left( \frac{d\sigma }{d\varOmega }\right) ^{\text {Ruth}}_{180^{\circ } - \theta _{\text {RMS}}}\ .\ \varOmega _{\text {RMS}}^{\text {eff}}\ .\ \varepsilon \ .\ i\ .\ d\ .\ t \end{aligned}$$
(A.3)

where \(\varOmega _{\text {RMS}}^{\text {eff}}\) and \(\varepsilon \) are effectve solid angle and transmission efficiency of the RMS, respectively.

Eliminating the product \((i\ .\ d\ .\ t)\), between Eqs. A.1 and A.3, and rearranging, one can easily get

$$\begin{aligned} \varOmega ^{\text {eff}}_{\text {RMS}} = \frac{Y^{\text {Ruth}}_{\text {RMS}}}{Y^{\text {Ruth}}_{\text {norm}}}\ .\ \varOmega _{\text {norm}}\ .\ \frac{1}{\varepsilon }\ .\ \left( \frac{d\sigma }{d\varOmega }\right) ^{\text {Ruth}}_{\theta _{\text {norm}}} \ /\ \left( \frac{d\sigma }{d\varOmega }\right) ^{\text {Ruth}}_{180^{\circ } - \theta _{\text {RMS}}}\ . \end{aligned}$$
(A.4)

One may note here that the ratio of the two differential cross sections on the right hand side of Eq. A.4 boils down to \(\frac{\sin ^{4}\left( \frac{180^{\circ } - \theta _{\text {RMS}}}{2}\right) }{\sin ^{4}\frac{\theta _{\text {norm}}}{2}}\).

To obtain the differential cross-section from measured yields for any other quasi-elastic (i.e. elastic, inelastic, transfer) channel, the following relation is used

$$\begin{aligned} \left( \frac{d\sigma }{d\varOmega }\right) ^{\text {qel}}_{180^{\circ } - \theta _{\text {RMS}}} = \frac{Y_{\text {RMS}}}{Y_{\text {norm}}}\ .\ \frac{\varOmega _{\text {norm}}}{\varOmega ^{\text {eff}}_{\text {RMS}}}\ .\ \frac{1}{\varepsilon }\ .\ \left( \frac{d\sigma }{d\varOmega }\right) ^{\text {Ruth}}_{\theta _{\text {norm}}}\ .\nonumber \\ \end{aligned}$$
(A.5)

In deriving quation A.5, it has been assumed that the differential cross sections do not vary significantly within the respective acceptances. While the assumption is quite justified for \(\left( \frac{d\sigma }{d\varOmega }\right) ^{\text {Ruth}}\) (as the acceptance of the normalization detector is usually very small), the same may not be strictly valid for \(\left( \frac{d\sigma }{d\varOmega }\right) ^{\text {qel}}\) (because of finite acceptance of the RMS) in every situation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Kalkal, S. & Nath, S. Studying multi-nucleon transfer reaction in a recoil mass spectrometer. Eur. Phys. J. A 57, 9 (2021). https://doi.org/10.1140/epja/s10050-020-00323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00323-5

Navigation