Skip to main content

Advertisement

Log in

MicroRNA Profiling in Mesenchymal Stromal Cells: the Tissue Source as the Missing Piece in the Puzzle of Ageing

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Ageing is among the main risk factors for human disease onset and the identification of the hallmarks of senescence remains a challenge for the development of appropriate therapeutic target in the elderly. Here, we compare senescence-related changes in two cell populations of mesenchymal stromal cells by analysing their miRNA profiling: Human Dental Pulp Stromal Cells (hDPSCs) and human Periosteum-Derived Progenitor Cells (hPDPCs). After these cells were harvested, total RNA extraction and whole genome miRNA profiling was performed, and DIANA-miRPath analysis was applied to find the target/pathways. Only 69 microRNAs showed a significant differential expression between dental pulp and periosteum progenitor cells. Among these, 24 were up regulated, and 45 were downregulated in hDPSCs compared to hPDPCs. Our attention was centered on miRNAs (22 upregulated and 34 downregulated) involved in common pathways for cell senescence (i.e. p53, mTOR pathways), autophagy (i.e. mTOR and MAPK pathways) and cell cycle (i.e. MAPK pathway). The p53, mTOR and MAPK signaling pathways comprised 43, 37 and 112 genes targeted by all selected miRNAs, respectively. Our finding is consistent with the idea that the embryological origin influences cell behavior and the ageing process. Our study strengthens the hypothesis that ageing is driven by numerous mediators interacting through an intricate molecular network, which affects adult stem cells self-renewal capability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Niccoli, T., & Partridge, L. (2012). Ageing as a risk factor for disease. Current Biology, 22(17), R741–R752. https://doi.org/10.1016/j.cub.2012.07.024.

    Article  CAS  PubMed  Google Scholar 

  3. Sperka, T., Wang, J., & Rudolph, K. (2012). DNA damage checkpoints in stem cells, ageing and Cancer. Nature Reviews Molecular Cell Biology, 13(9), 579–590. https://doi.org/10.1038/nrm3420.

    Article  CAS  PubMed  Google Scholar 

  4. Boyette, L. B., & Tuan, R. S. (2014). Adult stem cells and diseases of aging. Journal of Clinical Medicine, 3(1), 88–134. https://doi.org/10.3390/jcm3010088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones, D. L., & Rando, T. A. (2011). Emerging models and paradigms for stem cell ageing. Nature Cell Biology, 13(5), 506–512. https://doi.org/10.1038/ncb0511-506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oh, J., Lee, Y., & Wagers, A. (2014). Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nature Medicine, 20(8), 870–880. https://doi.org/10.1038/nm.3651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuilman, T., Michaloglou, C., Mooi, W. J., & Peeper Daniel, S. (2010). The essence of senescence. Genes & Development, 24(22), 2463–2479. https://doi.org/10.1101/gad.1971610.

    Article  CAS  Google Scholar 

  8. Kurz, D. J., Decary, S., Hong, Y., & Erusalimsky, J. D. (2000). Senescence-associated (Beta)-Galactosidase reflects an increase in Lysosomal mass during replicative ageing of human endothelial cells. Journal of Cell Science, 113(20), 3613–3622.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang, H., Ju, Z., & Rudolph, K. L. (2007). Telomere Shortening and Ageing. Zeitschrift Fur Gerontologie Und Geriatrie, 40(5), 314–324. https://doi.org/10.1007/s00391-007-0480-0.

    Article  CAS  PubMed  Google Scholar 

  10. Papadopoulos, G. L., Alexiou, P., Maragkakis, M., Reczko, M., & Hatzigeorgiou, A. G. (2009). DIANA-MirPath: Integrating human and mouse MicroRNAs in pathways. Bioinformatics (Oxford, England), 25(15), 1991–1993. https://doi.org/10.1093/bioinformatics/btp299.

    Article  CAS  Google Scholar 

  11. Rufini, A., Tucci, P., Celardo, I., & Melino, G. (2013). Senescence and aging: The critical roles of P53. Oncogene, 32(43), 5129–5143. https://doi.org/10.1038/onc.2012.640.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Z., & Klionsky, D. J. (2010). Eaten alive: A history of macroautophagy. Nature Cell Biology, 12(9), 814–822. https://doi.org/10.1038/ncb0910-814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Papadopoli, D., Boulay, K., Kazak, L., Pollak, M., Mallette, F., Topisirovic, I., & Hulea, L. (2019). MTOR as a Central Regulator of Lifespan and Aging. F1000Research 8 (July). https://doi.org/10.12688/f1000research.17196.1.

  14. He, Y., She, H., Zhang, T., Xu, H., Cheng, L., Yepes, M., Zhao, Y., & Mao, Z. (2018). P38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. The Journal of Cell Biology, 217(1), 315–328. https://doi.org/10.1083/jcb.201701049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, Y, Y., Li, Y., Jiang, W, Q., & Zhou, L, F. (2015). MAPK/JNK Signalling: A potential autophagy regulation pathway. Bioscience Reports 35 (3). https://doi.org/10.1042/BSR20140141.

  16. Xia, X., Chen, W., McDermott, J. & Han, J, D, J. 2017. Molecular and Phenotypic Biomarkers of Aging. F1000Research 6 (June). https://doi.org/10.12688/f1000research.10692.1.

  17. Dodig, S., Čepelak, I. & Pavić, I. (2019). Hallmarks of senescence and aging. Biochemia Medica 29 (3). https://doi.org/10.11613/BM.2019.030501.

  18. Kumar, S., Vijayan, M., Bhatti, J, S., & Reddy, P, H. (2017). Chapter three - MicroRNAs as peripheral biomarkers in aging and age-related diseases. In Progress in Molecular Biology and Translational Science, edited by P. Hemachandra Reddy, 146:47–94. Molecular biology of aging. Academic press. https://doi.org/10.1016/bs.pmbts.2016.12.013.

  19. Bartel, D. P. (2018). Metazoan MicroRNAs. Cell, 173(1), 20–51. https://doi.org/10.1016/j.cell.2018.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shenoy, A., & Blelloch, R, H. 2014. Regulation of MicroRNA function in somatic stem cell proliferation and differentiation. Nature Reviews. Molecular Cell Biology 15 (9): 565–76. https://doi.org/10.1038/nrm3854.

  21. Maes, O. C., An, J., Sarojini, H., & Wang, E. (2008). Murine MicroRNAs implicated in liver functions and aging process. Mechanisms of Ageing and Development, 129(9), 534–541. https://doi.org/10.1016/j.mad.2008.05.004.

    Article  CAS  PubMed  Google Scholar 

  22. Li, N., Bates, D. J., An, J., Terry, D. A., & Wang, E. (2011). Up-regulation of key MicroRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiology of Aging, 32(5), 944–955. https://doi.org/10.1016/j.neurobiolaging.2009.04.020.

    Article  CAS  PubMed  Google Scholar 

  23. Gu, S., Ran, S., Liu, B., & Liang, J. (2016). MiR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression. FEBS Letters, 590(8), 1123–1131. https://doi.org/10.1002/1873-3468.12138.

    Article  CAS  PubMed  Google Scholar 

  24. Vozzi, G., Lucarini, G., Dicarlo, M., Andreoni, C., Salvolini, E., Ferretti, C., & Mattioli-Belmonte, M. (2016). In vitro lifespan and senescent behaviour of human periosteal derived stem cells. Bone, 88(July), 1–12. https://doi.org/10.1016/j.bone.2016.04.013.

    Article  CAS  PubMed  Google Scholar 

  25. Dicarlo, M., Teti, G., Iezzi, I., Cerqueni, G., Manzotti, S., Falconi, M., & Mattioli-Belmonte, M. (2018). Detecting senescent fate in Mesenchymal stem cells: A combined Cytofluorimetric and Ultrastructural approach. Biogerontology, 19(5), 401–414. https://doi.org/10.1007/s10522-018-9766-4.

    Article  CAS  PubMed  Google Scholar 

  26. Iezzi, I., Cerqueni, G., Licini, C., Lucarini, G., & Mattioli, B. M. (2019). Dental pulp stem cells senescence and regenerative potential relationship. Journal of Cellular Physiology, 234(5), 7186–7197. https://doi.org/10.1002/jcp.27472.

    Article  CAS  PubMed  Google Scholar 

  27. Mahajan, A. (2012). Periosteum: A Highly Underrated Tool in Dentistry. International Journal of Dental, 2012, 717816–717816. https://doi.org/10.1155/2012/717816.

    Article  Google Scholar 

  28. Mosquera-Perez, R., Fernández-Olavarria, A., Diaz-Sanchez, R. M., Gutierrez-Perez, J. L., Serrera-Figallo, M. Á., & Torres-Lagares, D. (2019). Stem cells and oral surgery: A systematic review. Journal of Clinical and Experimental Dentistry, 11(12), e1181–e1189. https://doi.org/10.4317/jced.56571.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tatullo, M., Marrelli, M., & Paduano, F. (2015). The regenerative medicine in Oral and maxillofacial surgery: The Most important innovations in the clinical application of Mesenchymal stem cells. International Journal of Medical Sciences, 12(1), 72–77. https://doi.org/10.7150/ijms.10706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., DenBesten, P., Gehron Robey, P., & Shi, S. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81(8), 531–535. https://doi.org/10.1177/154405910208100806.

    Article  CAS  PubMed  Google Scholar 

  31. Ferretti, C., Borsari, V., Falconi, M., Gigante, A., Lazzarini, R., Fini, M., Di Primio, R., & Mattioli-Belmonte, M. (2012). Human Periosteum-derived stem cells for tissue engineering applications: The role of VEGF. Stem Cell Reviews and Reports, 8(may), 882–890. https://doi.org/10.1007/s12015-012-9374-7.

    Article  CAS  PubMed  Google Scholar 

  32. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent Mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905.

    Article  CAS  PubMed  Google Scholar 

  33. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell, 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  34. Harries, L. (2014). MicroRNAs as mediators of the ageing process. Genes, 5(3), 656–670. https://doi.org/10.3390/genes5030656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferretti, C., Lucarini, G., Andreoni, C., Salvolini, E., Bianchi, N., Vozzi, G., Gigante, A., & Mattioli-Belmonte, M. (2015). Human periosteal derived stem cell potential: The impact of age. Stem Cell Reviews and Reports, 11(3), 487–500. https://doi.org/10.1007/s12015-014-9559-3.

    Article  CAS  PubMed  Google Scholar 

  36. Ito, K., Yamada, Y., Nakamura, S., & Ueda, M. (2011). Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for Osseointegration of dental implants. The International Journal of Oral & Maxillofacial Implants, 26(5), 947–954.

    Google Scholar 

  37. Ichikawa, Y., Watahiki, J., Nampo, T., Nose, K., Yamamoto, G., Irie, T., Mishima, K., & Maki, K. (2015). Differences in the developmental origins of the Periosteum may influence bone healing. Journal of Periodontal Research, 50(4), 468–478. https://doi.org/10.1111/jre.12229.

    Article  CAS  PubMed  Google Scholar 

  38. Orciani, M., Di Primio, R., Ferretti, C., Orsini, G., Salvolini, E., Lazzarini, R., & Mattioli-Belmonte, M. (2012). In vitro evaluation of Mesenchymal stem cell isolation possibility from different intra-Oral tissues. Journal of Biological Regulators and Homeostatic Agents, 26(2 Suppl), 57–63.

    CAS  PubMed  Google Scholar 

  39. Ledesma-Martínez, E., Mendoza-Núñez, V, M., & Santiago-Osorio, E. (2016). Mesenchymal Stem Cells Derived from Dental Pulp: A Review. Stem Cells International 2016. https://doi.org/10.1155/2016/4709572.

  40. Duchamp de Lageneste, O., Julien, A., Abou-Khalil, R., Frangi, G., Carvalho, C., Cagnard, N., Cordier, C., Conway, S. J., & Colnot, C. (2018). Periosteum Contains Skeletal Stem Cells with High Bone Regenerative Potential Controlled by Periostin. Nature Communications, 9(1), 773. https://doi.org/10.1038/s41467-018-03124-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matheu, A., Maraver, A., & Serrano, M. (2008). The Arf/P53 pathway in Cancer and aging. Cancer Research, 68(15), 6031–6034. https://doi.org/10.1158/0008-5472.CAN-07-6851.

    Article  CAS  PubMed  Google Scholar 

  42. Vaseva, A, V., & Moll, U, M. (2009). “The Mitochondrial P53 Pathway.” Biochimica et Biophysica Acta (BBA) - Bioenergetics, Mitochondrial Physiology and Pathology, 1787 (5): 414–20. https://doi.org/10.1016/j.bbabio.2008.10.005

  43. Zhang, D, Y., Wang, H, J., & Tan, Y, Z. (2011). Wnt/β-Catenin Signaling Induces the Aging of Mesenchymal Stem Cells through the DNA Damage Response and the P53/P21 Pathway. PLoS ONE 6 (6). https://doi.org/10.1371/journal.pone.0021397.

  44. Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., et al. (2016). Naturally Occurring P16 Ink4a -Positive Cells Shorten Healthy Lifespan. Nature, 530(7589), 184–189. https://doi.org/10.1038/nature16932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Freund, A., Patil, C. K., & Campisi, J. (2011). P38MAPK Is a Novel DNA Damage Response-Independent Regulator of the Senescence-Associated Secretory Phenotype. The EMBO Journal, 30(8), 1536–1548. https://doi.org/10.1038/emboj.2011.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Passos, J. F., Nelson, G., Wang, C., Richter, T., Simillion, C., Proctor, C. J., Miwa, S., et al. (2010). Feedback between P21 and Reactive Oxygen Production Is Necessary for Cell Senescence. Molecular Systems Biology, 6, 347. https://doi.org/10.1038/msb.2010.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, J. H., Zhang, Y., & Herman, B. (2003). Caspases, Apoptosis and Aging. Ageing Research Reviews, 2(4), 357–366. https://doi.org/10.1016/S1568-1637(03)00026-6.

    Article  CAS  PubMed  Google Scholar 

  48. Hill, C. G., Matyunina, L. V., Walker, D., Benigno, B. B., & MscDonald, J. F. (2014). Transcriptional override: A regulatory network model of indirect responses to modulations in MicroRNA expression. BMC Systems Biology, 8(March), 36. https://doi.org/10.1186/1752-0509-8-36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin, J., & Amir A. (2018). “Homeostasis of Protein and MRNA Concentrations in Growing Cells.” Nat. Commun. 9 (1). https://doi.org/10.1038/s41467-018-06714-z.

  50. Barbosa, M.,. C., Grosso, R.,. A., & Fader, C.,. M. (2019). Hallmarks of aging: An Autophagic perspective. Frontiers in Endocrinology, 9(January). https://doi.org/10.3389/fendo.2018.00790.

  51. Bergamini, E., Cavallini, G., Donati, A., & Gori, Z. (2004). The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. The International Journal of Biochemistry & Cell Biology, Autophagy and Cell Fate, 36(12), 2392–2404. https://doi.org/10.1016/j.biocel.2004.05.007.

    Article  CAS  Google Scholar 

  52. Rodier, F., Campisi, J., & Bhaumik, D. (2007). Two faces of P53: Aging and tumor suppression. Nucleic Acids Research, 35(22), 7475–7484. https://doi.org/10.1093/nar/gkm744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alraies, A., Alaidaroos, N. Y. A., Waddington, R. J., Moseley, R., & Sloan, A. J. (2017). Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biology, 18, 12. https://doi.org/10.1186/s12860-017-0128-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Mattioli Belmonte.

Ethics declarations

Conflict of Interest

The authors did not receive support from any organization for the submitted work.

Ethical Approval

The study was following the Marche region Ethics Board guidelines and with the 1964 Declaration of Helsinki and its later amendments. All subjects were aware that the tissue was discarded surgical material and the study did not expose them to any risk. A verbal informed consent and was obtained in lieu of a written authorization.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iezzi, I., Lazzarini, R., Cerqueni, G. et al. MicroRNA Profiling in Mesenchymal Stromal Cells: the Tissue Source as the Missing Piece in the Puzzle of Ageing. Stem Cell Rev and Rep 17, 1014–1026 (2021). https://doi.org/10.1007/s12015-020-10095-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10095-6

Keywords

Navigation