Skip to main content
Log in

The Fine Structure of the Quasi-Biennial Oscillations of Sunspot Areas and the Double Magnetic Cycle of the Sun

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

One of the basic features of solar activity is the quasi-biennial oscillations (QBOs)—variations with a period of about two years. The nature of the QBO remains unclear and the most puzzling is the high instability of the QBO period. We investigated a fine structure of the QBO period variability as manifested in sunspot area variations in Solar Cycles 19 – 23 using the wavelet transform with a real mother wavelet, Daubechies 10, that provided a high temporal resolution. We found that within every 11-yr solar cycle the QBO period varies not randomly, as it is widely accepted now, but it gradually decreases from the beginning of the solar cycle till the end, in phase with the shift of the average sunspots latitude to the equator. We have analyzed in a similar way the time series which were simulated using a combination of sine waves with different periods (constant and variable one) and red noise with a standard deviation as large as 40% of the sine amplitude. The analysis has shown that noise does not distort significantly the initial signal and noise itself does not form the structures with the properties which were observed in the case of the natural time series. We suppose that the revealed modification of the QBO period with the development of the solar cycle may be related to the latitudinal differential rotation in the solar convection zone and the possible influence of the rotational velocity in the region of the QBO generation on the QBO period value. Under this assumption, the process responsible for the QBO generation should operate in a layer with a substantial latitudinal shear which according to the helioseismology analysis is observed in the bulk of the convection zone and is getting smaller in the vicinity of the tachocline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bazilevskaya, G., Broomhall, A., Elsworth, Y., Nakariakov, V.: 2014, A combined analysis of the observational aspects of the quasi-biennial oscillation in solar magnetic activity. Space Sci. Rev. 186, 359.

    Article  ADS  Google Scholar 

  • Beaudoin, P., Simard, C., Cossette, J., Charbonneau, P.: 2016, Double dynamo signatures in a global MHD simulation and mean-field dynamos. Astrophys. J. 826, 138.

    Article  ADS  Google Scholar 

  • Benevolenskaya, E.: 1995, Double magnetic cycle of solar activity. Solar Phys. 161, 1.

    Article  ADS  Google Scholar 

  • Benevolenskaya, E.: 1998, The quasi-biennial cycle of solar activity and dynamo theory. Astrophys. J. 509, L49.

    Article  ADS  Google Scholar 

  • Brandenburg, A.: 2005, The case for a distributed solar dynamo shaped by nearsurface shear. Astrophys. J. 625, 539.

    Article  ADS  Google Scholar 

  • Brandenburg, A., Rogachevskii, I., Kleorin, N.: 2016, Magnetic concentrations in stratified turbulence: the negative effective magnetic pressure instability. New J. Phys. 18, 125011. DOI.

    Article  ADS  Google Scholar 

  • Bruevich, E.A., Bruevich, V.V., Artamonov, B.P.: 2018, Multiple cycles of magnetic activity in the Sun and Sun-like stars and their evolution. Res. Astron. Astrophys. 18(N7), 76.

    Article  ADS  Google Scholar 

  • Bruevich, E.A., Bruevich, V.V., Yakunina, G.V.: 2014, The study of time series of monthly averaged values of \(F_{10.7}\) from 1950 to 2010. Sun Geosph. 8, 91.

    Google Scholar 

  • Bruevich, E., Katsova, M., Sokolov, D.: 2001, Levels of coronal and chromospheric activity in late-type stars and various types of dynamo waves. Astron. Rep. 45, 718.

    Article  ADS  Google Scholar 

  • Daubechies, I.: 1990, The wavelet transform, time–frequency localization and signal analysis. IEEE Trans. Inf. Theory 36, 961.

    Article  MathSciNet  ADS  Google Scholar 

  • Feminella, F., Storini, M.: 1997, Large scale dynamical phenomena during solar activity cycles. Astron. Astrophys. 322, 311.

    ADS  Google Scholar 

  • Frick, P., Baliunas, S.L., Galyagin, D., Sokoloff, D., Soon, W.: 1997, Wavelet analysis of stellar chromospheric activity variations. Astrophys. J. 483, 426.

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N.: 1963, Corona and the 11-year solar cycle. Soviet Astron. 7, 311.

    ADS  Google Scholar 

  • Gnevyshev, M.N.: 1967, On the 11-years cycle of solar activity. Solar Phys. 1, 107.

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N.: 1977, Essential features of the 11-year solar cycle. Solar Phys. 51, 175.

    Article  ADS  Google Scholar 

  • Hathaway, D.: 2015, The solar cycle. Living Rev. Solar Phys. 12, 4. DOI.

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Thompson, M.J., Toomre, J.: 2000, Deeply penetrating banded zonal flows in the solar convection zone. Astrophys. J. Lett. 533, L163.

    Article  ADS  Google Scholar 

  • Huang, S.Y., Hadid, L.Z., Sahraoui, F., Yuan, Z.G., Deng, X.H.: 2017, On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence. Astrophys. J. Lett. 836, L10.

    Article  ADS  Google Scholar 

  • Ivanov-Kholodnyj, G.S., Chertoprud, V.E.: 2009, Quasi-biennial variations of the total solar flux: their manifestation in variations of the stratospheric wind and the Earth’s rotation velocity. Geomagn. Aeron. 49, 1283.

    Article  ADS  Google Scholar 

  • Kitchatinov, L.L., Mazur, M.V.: 2000, Stability and equilibrium of emerged magnetic flux. Solar Phys. 191, 325.

    Article  ADS  Google Scholar 

  • Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2005, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21–23. Periodicities, North-South asymmetries and r-mode signatures. Astron. Astrophys. 438, 1067. DOI.

    Article  ADS  Google Scholar 

  • Kolláth, Z., Oláh, K.: 2009, Multiple and changing cycles of active stars I. Methods of analysis and application to the solar cycles. Astron. Astrophys. 501, 695. DOI.

    Article  ADS  Google Scholar 

  • Kostyuchenko, I.: 2017, Dynamic characteristics of area variations of small and large sunspots and quasi-biennial oscillations in solar activity. Geomagn. Aeron. 57, 817. DOI.

    Article  ADS  Google Scholar 

  • Kostyuchenko, I., Timashev, S.: 1998, Flicker-noise in processes of solar activity. Int. J. Bifurc. Chaos Appl. Sci. Eng. 8, 805.

    Article  Google Scholar 

  • Krivova, N.A., Solanki, S.K.: 2002, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701.

    Article  ADS  Google Scholar 

  • Kuklin, G.V.: 2000, On two populations of sunspot groups. Bull. Astron. Inst. Czechoslov. 31, 224.

    ADS  Google Scholar 

  • Lawrence, J.K., Cadavid, A.C., Ruzmaikin, A.A.: 1995, Turbulent and chaotic dynamics underlying solar magnetic variability. Astrophys. J. 455, 366.

    Article  ADS  Google Scholar 

  • Morgenthaler, A., Petit, P., Morin, J., et al.: 2011, Direct observation of magnetic cycles in Sun-like stars. Astron. Nachr. 332, 866.

    Article  ADS  Google Scholar 

  • Nagovitsyn, Yu., Pevtsov, A.: 2016, On presence of two populations of sunspots. Astrophys. J. 833, 94.

    Article  ADS  Google Scholar 

  • Nagovitsyn, Yu., Pevtsov, A., Osipova, A.A.: 2018, Two populations of sunspots: differential rotation. Astron. Lett. 44, 202.

    Article  ADS  Google Scholar 

  • Noyes, R.W., Weiss, N.O.: 1984, The relation between stellar rotation rate and activity cycle periods. Astrophys. J. 287, 769.

    Article  ADS  Google Scholar 

  • Popova, E.P., Potemina, K.A.: 2013, Modeling of the solar activity double cycle using dynamical systems. Geomagn. Aeron. 53, 941. DOI.

    Article  ADS  Google Scholar 

  • Rakhmanova, L., Riazantseva, M., Zastenker, G., Verigin, M.: 2018, Kinetic-scale ion flux fluctuations behind the quasi-parallel and quasi-perpendicular bow shock. J. Geophys. Res. 123, 5300.

    Article  Google Scholar 

  • Saar, S.H., Brandenburg, A.: 1999, Time evolution of the magnetic activity cycle period. II. Results for an expanded stellar sample. Astrophys. J. 524, 295.

    Article  ADS  Google Scholar 

  • Salakhutdinova, I.I.: 1998, A fractal structure of the time series of global indices of solar activity. Solar Phys. 181, 221.

    Article  ADS  Google Scholar 

  • Schou, J., Antia, H.M., Basu, S., et al.: 1998, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390.

    Article  ADS  Google Scholar 

  • Spiegel, E., Zahn, J.-P.: 1992, The solar tachocline. Astron. Astrophys. 265, 106.

    ADS  Google Scholar 

  • Timashev, S.F., Polyakov, Yu.S.: 2007, Review of flicker noise spectroscopy in electrochemistry. Fluct. Noise Lett. 7, R15.

    Article  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R.: 2003, On the fluctuating component of the Sun’s large-scale magnetic field. Astrophys. J. 590, 1111.

    Article  ADS  Google Scholar 

  • Yushkov, E., Lukin, A., Sokoloff, D.: 2018, Magnetic energy transient growth in the subcritical Kazantsev model. Phys. Rev. E 97, 1111.

    Article  Google Scholar 

  • Zharkova, V.V., Shepherd, S.J., Popova, E., Zharkov, S.I.: 2015, Heartbeat of the Sun from Principal Component Analysis and prediction of solar activity on a millennium timescale. Sci. Rep. 5, 15689.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Natan Kleorin and Galina Bazilevskaya for the discussions and very helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Kostyuchenko.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Towards Future Research on Space Weather Drivers

Guest Editors: Hebe Cremades and Teresa Nieves-Chinchilla

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyuchenko, I., Bruevich, E. The Fine Structure of the Quasi-Biennial Oscillations of Sunspot Areas and the Double Magnetic Cycle of the Sun. Sol Phys 296, 8 (2021). https://doi.org/10.1007/s11207-020-01745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01745-6

Keywords

Navigation