Skip to main content
Log in

Simulation Study of Carbon Vacancy Trapping Effect on Low Power 4H-SiC MOSFET Performance

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The carbon vacancy in 4H-SiC is an important recombination center of the minority carrier and a direct consequence of SiC-based device degradation. In 4H-SiC, this defect acts as the primary carrier-lifetime killer. Whether, low-energy electron radiation exposure or high temperature processing in an inert ambient gas will produce the carbon vacancy defect. Despite, the extensiveness of the studies concerning the defect’s modeling and characterization, numerous essential questions remain. Amongst them, we have the impact of these defects on the performance of 4H-SiC MOSFET. Herein, the influence of intrinsic defect states, namely, Z1/2 and EH6/7 centers, on the 4H-SiC MOSFET electrical outputs is examined via 2D numerical simulation. The obtained results show that the traps act to increase the device on-state resistance (RON), reduce the channel mobility, increase the threshold voltage (Vth). Besides, the increase of the temperature leads to less influence of the traps on the threshold variation. Furthermore, due to their locations in the bandgap, the impact of both Z1/2 and EH6/7 centers at room temperature on the device electrical outputs is extreme. For high temperature the EH6/7 have the severest impact because of the cross section temperature dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable

References

  1. Baliga BJ (2005) Silicon Carbide Power Devices. World Scientific

  2. ROHM Model SCT2H12NZ (1700V) (2018) Accessed: Jun. 2018. [Online]. Available: http://www.rohm.com/web/eu/products/-/product/ SCT2H12NZ

  3. CREE Model C3M0280090D (900V) (2018) Accessed: Jun. 2018. [Online]. Available: http://www.wolfspeed.com/c3m0280090d

  4. ROHM Model SCT3017AL (650V) (2018). Accessed: Jun. 2018. [Online]. Available: http://www.rohm.com/web/eu/products/-/product/SCT3017AL

  5. Corte FGD, De Martino G, Pezzimenti F, Adinolfi G, Graditi G (2018). IEEE Trans Electron Dev 65:3352–3360

    Article  Google Scholar 

  6. De Martino G, Pezzimenti F, Della Corte FG, Adinolfi G, Graditi G (2017) In Proc. IEEE Int. Conf. Ph. D. Research in Microelectronics and Electronics - PRIME, 221–224

  7. Khan O, Xiao W, El Moursi MS (2016). IEEE Trans Power Electron 32:3278–3284

    Article  Google Scholar 

  8. Zhou H, Zhao J, Han Y (2014). IEEE Trans Power Electron 30:3479–3487

    Article  Google Scholar 

  9. Graditi G, Adinolfi G, Tina GM (2014). Appl Energy 115:140–150

    Article  Google Scholar 

  10. Bencherif H, Pezzimenti F, Dehimi L, De Martino G, Corte FGD (2020). Appl Phys A-Mater. https://doi.org/10.1007/s00339-020-03850-6

  11. Hemmingsson CG, Son NT, Ellison A, Zhang J, Janz_en E (1998) Phys Rev B 58:R10119

  12. Klein PB (2008). J Appl Phys 103:033702

    Article  CAS  Google Scholar 

  13. Son NT, Trinh XT, Løvlie LS, Svensson BG, Kawahara K, Suda J, Kimoto T, Umeda T, Isoya J, Makino T, Ohshima T, Janz_en E (2012) Phys Rev Lett 109:187603

  14. Trinh XT, Sz_asz K, Hornos T, Kawahara K, Suda J, Kimoto T, Gali A, Janz_en E, Son NT (2013) Phys Rev B 88:235209

  15. Bencherif H, Yousfi A, Dehimi L, Pezzimenti F, Della Corte FG (2019) In Proc. IEEE Inter. Conf. on Sustainable Renewable Energy Systems and Applications – ICSRESA pp. 1–4

  16. Bencherif H, Dehimi L, Pezzimenti F, De Martino G, Della Corte FG (2019). J Electron Mater 48:3871–3880

    Article  CAS  Google Scholar 

  17. Bencherif H, Dehimi L, Pezzimenti F, Yousfi A, De Martino G, Della Corte FG (2019) In Proc. IEEE Inter. Conf. on Advanced Electrical Engineering – ICAEE pp. 1–4

  18. Umeda T, Isoya J, Morishita N, Ohshima T, Kamiya T (2004). Phys Rev B 69:121201

    Article  CAS  Google Scholar 

  19. Zywietz A, Furthm€uller J, Bechstedt F (1999). Phys Rev B 59:15166

    Article  CAS  Google Scholar 

  20. Torpo L, Marlo M, Staab TEM, Nieminen RM (2001). J Phys Condens Matter 13:6203

    Article  CAS  Google Scholar 

  21. Bockstedte M, Marini A, Pankratov O, Rubio A (2010). Phys Rev Lett 105:026401

    Article  PubMed  CAS  Google Scholar 

  22. Bencherif H, Dehimi L, Pezzimenti F, Della Corte FG (2019). Appl Phys A-Mater 125:294

    Article  CAS  Google Scholar 

  23. Storasta L, Tsuchida H (2007). Appl Phys Lett 90:062116

    Article  CAS  Google Scholar 

  24. Storasta L, Tsuchida H, Miyazawa T, Ohshima T (2008). J Appl Phys 103:013705

    Article  CAS  Google Scholar 

  25. Hiyoshi T, Kimoto T (2009). Appl Phys Express 2:041101

    Article  CAS  Google Scholar 

  26. Hiyoshi T, Kimoto T (2009). Appl. Phys. Express 2:091101

    Article  CAS  Google Scholar 

  27. Ayedh HM, Nipoti R, Hallen A, Svensson BG (2015). Appl Phys Lett 107:252102

    Article  CAS  Google Scholar 

  28. Sung W, Baliga BJ (2016). IEEE Electron Device Letters 37:1605–1608

    Article  CAS  Google Scholar 

  29. Mikamura Y, Hiratsuka K, Tsuno T, Michikoshi H, Tanaka S, Masuda T, Sekiguchi T (2014). IEEE Trans Electron Dev 62:382–389

    Article  CAS  Google Scholar 

  30. Okamoto M, Iijima M, Nagano T, Fukuda K, Okumura H (2012). Mater Science Forum 717:781–784

    Article  CAS  Google Scholar 

  31. Silvaco Int. (2013) Atlas User’s Manual, Device Simulator Software

  32. Baliga BJ (2005) Silicon Carbide Power Devices. World Scientific, Singapore

    Google Scholar 

  33. Raghunathan R, Baliga BJ (1997) Proc IEEE ISPSD’97, 173–176

  34. Ruff M, Mitlehner H, Helbig R (1994) 41, 1040–1054

  35. Lindefelt U (1998). J Appl Phys 84:2628–2637

  36. Lombardi C, Manzini S, Saporito A, Vanzi M (1992). IEEE Trans Comp Aided Design 7:1154–1171

    Google Scholar 

  37. Roschke M, Schwierz F (2001). IEEE Trans Electron Devices 48:1442–1447

    Article  CAS  Google Scholar 

  38. Pezzimenti F (2013). IEEE Trans Electron Devices 60:1404–1411

    Article  CAS  Google Scholar 

  39. Bellone S, Corte FGD, Freda Albanese L, Pezzimenti F (2011). IEEE Trans Power Electron 26:2835–2843

    Article  Google Scholar 

  40. Megherbi ML, Pezzimenti F, Dehimi L, Saadoune MA, Della Corte FG (2018). IEEE Trans Electron Devices 65(8):3371–3378

    Article  CAS  Google Scholar 

  41. Pezzimenti F, Corte FGD, Nipoti R (2008). Microelectronics J 39:1594–1599

    Article  Google Scholar 

  42. Corte FGD, Pezzimenti F, Nipoti R (2007). Microelectronics J 38:1273–1279

    Article  CAS  Google Scholar 

  43. Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke WJ, Schöner A, Nordell N (1997). Phys Stat Sol A 162:199–225

    Article  CAS  Google Scholar 

  44. Klein PB, Shanabrook BV, Huh SW, Polyakov AY, Skowronski M, Sumakeris JJ, O'Loughlin MJ (2006). Appl Phys Lett 88:052110

    Article  CAS  Google Scholar 

  45. Danno K, Nakamura D, Kimoto T (2007). Appl Phys Lett 90:202109

    Article  CAS  Google Scholar 

  46. Son NT, Trinh XT, Lovlie LS, Svensson BG, Kawahara K, Suda J, Kimoto T, Umeda T, Isoya J, Makino T, Ohshima T, Janzén E (2012). Phys Rev Lett 109:187603

    Article  CAS  PubMed  Google Scholar 

  47. Booker ID, Janzén E, Son NT, Hassan J, Stenberg P, Sveinbjörnsson EÖ (2016). Appl Phys 119:235703

    Article  CAS  Google Scholar 

  48. Hemmingsson CG, Son NT, Ellison A, Zhang J, Janzén E (1998) Negative-U centers in 4H silicon carbide. Phys Rev B 58:R10119

    Article  CAS  Google Scholar 

  49. Hemmingsson C, Son NT, Kordina O, Bergman JP, Janzén E, Lindström JL, Savage S, Nordell N (1997). J Appl Phys 81:6155–6159

    Article  CAS  Google Scholar 

  50. Danno K, Kimoto T (2006). J Appl Phys 100:113728

    Article  CAS  Google Scholar 

  51. Hornos T, Gali A, Svensson BG (2011) Negative-U system of carbon vacancy in 4H-SiC. Mater Sci Forum 679–680:261–264

    Article  CAS  Google Scholar 

  52. Kawahara K, Trinh XT, Son NT, Janzen E, Suda J, Kimoto T (2014). J Appl Phys 115:143705

    Article  CAS  Google Scholar 

  53. Feng ZC, Zhao JH (2004) Silicon Carbide: Materials, Processing and Devices, vol 4. Taylor & Francis, New York, p 5

    Google Scholar 

  54. Pezzimenti F, Della Corte FG, Nipoti R (2009) in Proc. IEEE BCTM, 214–217

  55. Kimoto T, Niwa H, Okuda T, Saito E, Zhao Y, Asada S, Suda J (2018). J Phys D: Appl Phys 51(36):363001

    Article  CAS  Google Scholar 

  56. Afanas’ev VV, Bassler M, Pensl G, Schulz M (1997). Phys Status Solidi A 162:321–337

    Article  Google Scholar 

  57. Kaneko T, Tajima N, Yamasaki T, Nara J, Schimizu T, Kato K, Ohno T (2018). Appl Phys Express 11:011302

    Article  Google Scholar 

  58. Negoro Y, Katsumoto K, Kimoto T, Matsunami H (2004). J Appl Phys 96:224–228

    Article  CAS  Google Scholar 

  59. Kimoto T, Yonezawa Y (2018). Mater Sci Semiconductor Process 78:43–56

    Article  CAS  Google Scholar 

  60. Klein PB, Shanabrook BV, Huh SW, Polyakov AY, Skowronski M, Sumakeris JJ, O'Loughlin MJ (2006). Appl Phys Lett 88:052110

    Article  CAS  Google Scholar 

  61. Booker ID, Okuda T, Grivickas P, Hassan J, Janzén E, Sveinbjörnsson ÖE, Suda J, Kimoto T, Europ. Conf. Silicon Carbide 502 and Related Materials (Halkidiki, Greece) (2016)

Download references

Acknowledgments

This work was supported by DGRSDT of Ministry of Higher education of Algeria.

Funding

The authors received no financial support for the research, authorship, and publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the work.

Corresponding author

Correspondence to Hichem Bencherif.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

The Author transfers to Springer the non-exclusive publication rights and he warrants that his contribution is original and that he has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This transfer of publication rights covers the non-exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature. The author may self-archive an author-created version of his article on his own website and his institution’s repository, including his final version; however he may not use Springer’s PDF version which is posted on www.springerlink.com. Furthermore, the author may only post his version provided acknowledgement is given to the Journal and Springer as one of the original places of publication and a link is inserted to the published article on Springer’s website.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencherif, H., Dehimi, L., Athamena, N.e. et al. Simulation Study of Carbon Vacancy Trapping Effect on Low Power 4H-SiC MOSFET Performance. Silicon 13, 3629–3637 (2021). https://doi.org/10.1007/s12633-020-00920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00920-5

Keywords

Navigation