Skip to main content

Advertisement

Log in

Improving Performance of the Synthesis of Silica Nanoparticles by Surfactant-incorporated Wet Attrition Milling

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Abundant applications of silica nanoparticles (SiNPs) have motivated many research groups for silica nanoparticles synthesis with tuned properties. Here we show the formation of SiNPs using the top-down method in a wet attrition mill with effective use of surfactants sodium laurylsulfate (SLS) and Tween-80. The attrition milling was facilitated by using zirconium beads as milling media. The effects of surfactant concentration on particle size distribution have been studied with a particle size analyzer using the dynamic light scattering technique (DLS). The optimum conditions for wet milling with surfactant concentration were evaluated experimentally. The field emission scanning electron microscopy (FE-SEM) analysis confirmed particle size and particle shape. The energy-dispersive X-ray spectroscopy (EDX) exhibited the presence of silicon and oxygen as elemental constituents of SiNPs. The FEG - Transmission electron microscope and HR-TEM analysis identified SiNPs of spherical shape in the size range from 21 nm to 46 nm. The X-ray diffraction (XRD) peaks revealed the presence of SiNPs polycrystallite size as 35.54 nm and 40.63 nm for 5 wt % Tween-80 and 5 wt% SLS, respectively. The selected area electron diffraction (SAED) pattern analysis exhibited a polycrystalline structure of SiNPs. Fourier transform infrared spectroscopy (FTIR) peaks confirmed the purity of SiNPs and the presence of Si-O bond. The foam formation and foam stability were analyzed to explore the effects of foam formation on the wet milling process. These experimentations propose the effective use of surfactants in the milling method for the production of SiNPs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data and material regarding the work presented here can be available on request till 12 months from the first online publication date of this paper.

References

  1. Yokoyama T, CC H (2005) Nanoparticle technology for the production of functional materials. KONA Powder Part J 23:7–17. https://doi.org/10.14356/kona.2005006

    Article  CAS  Google Scholar 

  2. Kang Z, Liu Y, Lee S-T (2011) Small-sized silicon nanoparticles: new nanolights and nanocatalysts. Nanoscale 3(3):777–791. https://doi.org/10.1039/C0NR00559B

    Article  CAS  PubMed  Google Scholar 

  3. He Y et al (2009) Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew Chem Int Ed 48(1):128–132. https://doi.org/10.1002/anie.200802230

    Article  CAS  Google Scholar 

  4. Clark RJ, Dang MK, Veinot JG (2010) Exploration of organic acid chain length on water-soluble silicon quantum dot surfaces. Langmuir 26(19):15657–15664. https://doi.org/10.1021/la102983c

    Article  CAS  PubMed  Google Scholar 

  5. Kang Z et al (2007) Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J Am Chem Soc 129(40):12090–12091. https://doi.org/10.1021/ja075184x

    Article  CAS  PubMed  Google Scholar 

  6. Li M et al (2016) Nanomilling of drugs for bioavailability enhancement: a holistic formulation-process perspective. Pharmaceutics 8(2):17. https://doi.org/10.3390/pharmaceutics8020017

    Article  CAS  PubMed Central  Google Scholar 

  7. Li Z et al (2020) Understanding the mechanisms of silica nanoparticles for nanomedicine. WIREs Nanomed Nanobiotechnol :e1658. https://doi.org/10.1002/wnan.1658

  8. Jeelani PG et al (2019) Multifaceted application of silica nanoparticles. A review. Silicon :1–18. https://doi.org/10.1007/s12633-019-00229-y

  9. Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3(9):785–796. https://doi.org/10.1038/nrd1494

    Article  CAS  PubMed  Google Scholar 

  10. Ohemeng PO et al (2020) Iron and silver nanostructures: Biosynthesis, characterization and their catalytic properties. Nano-Struct Nano-Objects 22:100453. https://doi.org/10.1016/j.nanoso.2020.100453

    Article  CAS  Google Scholar 

  11. Akl M et al (2013) Preparation and characterization of silica nanoparticles by wet mechanical attrition of white and yellow sand. J Nanomed Nanotechnol 4(183):1–14. https://doi.org/10.4172/2157-7439.1000183

    Article  CAS  Google Scholar 

  12. Nilssen BE, Kleiv RA (2020) Silicon powder properties produced in a planetary ball mill as a function of grinding time, grinding bead size and rotational speed. Silicon :1–11. https://doi.org/10.1007/s12633-019-00340-0

  13. Matavos-Aramyan S, Jazebizadeh MH, Babaei S (2020) Investigating CO2, O2 and N2 permeation properties of two new types of nanocomposite membranes: Polyurethane/silica and polyesterurethane/silica. Nano-Struct Nano-Objects 21:100414. https://doi.org/10.1016/j.nanoso.2019.100414.

    Article  CAS  Google Scholar 

  14. Jung HJ et al (2015) Physicochemical properties of ball milled boron particles: Dry vs. wet ball milling process. Powder Technol 269:548–553. https://doi.org/10.1016/j.powtec.2014.03.058

    Article  CAS  Google Scholar 

  15. Patel CM, Chakraborty M, Murthy ZVP (2014) Preparation of fenofibrate nanoparticles by combined stirred media milling and ultrasonication method. Ultrason Sonochem 21(3):1100–1107. https://doi.org/10.1016/j.ultsonch.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  16. Patel CM, Chakraborty M, Murthy ZVP (2016) Fast and scalable preparation of starch nanoparticles by stirred media milling. Adv Powder Technol 27(4):1287–1294. https://doi.org/10.1016/j.apt.2016.04.021

    Article  CAS  Google Scholar 

  17. Wagener P et al (2012) Physical fabrication of colloidal ZnO nanoparticles combining wet-grinding and laser fragmentation. Appl Phys A 108(4):793–799. https://doi.org/10.1007/s00339-012-6971-x

    Article  CAS  Google Scholar 

  18. Patel CM, Chakraborty M, Murthy ZVP (2015) Influence of pH on the stability of alumina and silica nanosuspension produced by wet grinding. Part Sci Technol 33(3):240–245. https://doi.org/10.1080/02726351.2014.978425

    Article  CAS  Google Scholar 

  19. Vital A et al (2008) Ultrafine comminution of dental glass in a stirred media mill. Chem Eng Sci 63(2):484–494. https://doi.org/10.1016/j.ces.2007.09.027

    Article  CAS  Google Scholar 

  20. Merisko-Liversidge E, Liversidge GG (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 63(6):427–440. https://doi.org/10.1016/j.addr.2010.12.007.

    Article  CAS  PubMed  Google Scholar 

  21. Patel CM, Murthy Z, Chakraborty M (2012) Effects of operating parameters on the production of barium sulfate nanoparticles in stirred media mill. J Ind Eng Chem 18(4):1450–1457. https://doi.org/10.1016/j.jiec.2012.02.005

    Article  CAS  Google Scholar 

  22. Patravale V, Date AA, Kulkarni R (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56(7):827–840. https://doi.org/10.1211/0022357023691

    Article  CAS  PubMed  Google Scholar 

  23. Ali ME et al (2013) Surfactant assisted ball milling: a simple top down approach for the synthesis of controlled structure nanoparticle. Advanced materials research 832:356–361. https://doi.org/10.4028/www.scientific.net/AMR.832

  24. Nouri A, Wen C (2014) Surfactants in mechanical alloying/milling: a catch-22 situation. Crit Rev Solid State Mater Sci 39(2):81–108. https://doi.org/10.1080/10408436.2013.808985

    Article  CAS  Google Scholar 

  25. Bartos C et al (2016) The effect of an optimized wet milling technology on the crystallinity, morphology and dissolution properties of micro-and nanonized meloxicam. Molecules 21(4):507. https://doi.org/10.3390/molecules21040507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith G et al (2015) Quantification of residual crystallinity in ball milled commercially sourced lactose monohydrate by thermo-analytical techniques and terahertz spectroscopy. Eur J Pharm Biopharm 92:180–191. https://doi.org/10.1016/j.ejpb.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  27. Peltonen L, Hirvonen J (2010) Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol 62(11):1569–1579. https://doi.org/10.1111/j.2042-7158.2010.01022.x

    Article  CAS  PubMed  Google Scholar 

  28. Ghobrial S et al (2019) Characterization of amorphous Ni-Nb-Y nanoparticles for the hydrogen evolution reaction produced through surfactant-assisted ball milling. Electrocatalysis 10(6):680–689. https://doi.org/10.1007/s12678-019-00556-z

    Article  CAS  Google Scholar 

  29. Radhip NR (2015) Synthesis of silica nanoparticles from malpe beach sand using planetary ball mill method. J Pure Appl Ind Phys 5:165–172

    Google Scholar 

  30. Kwade A (1999) Wet comminution in stirred media mills—research and its practical application. Powder Technol 105(1–3):14–20. https://doi.org/10.1016/S0032-5910(99)00113-8

    Article  CAS  Google Scholar 

  31. Bilgili E, Hamey R, Scarlett B (2004) Production of pigment nanoparticles using a wet stirred mill with polymeric media. China Particuology 2(3):93–100. https://doi.org/10.1016/S1672-2515(07)60032-3

    Article  CAS  Google Scholar 

  32. Krishna S, Patel CM (2019) Preparation of coconut shell nanoparticles by wet-stirred media milling. Mater Lett 257:126738. https://doi.org/10.1016/j.matlet.2019.126738.

    Article  CAS  Google Scholar 

  33. Sakthivel S, Krishnan VV, Pitchumani B (2008) Influence of suspension stability on wet grinding for production of mineral nanoparticles. Particuology 6(2):120–124. https://doi.org/10.1016/j.partic.2007.12.001

    Article  CAS  Google Scholar 

  34. Brinker CJ, Scherer GW (2013) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, Cambridge. https://doi.org/10.1016/C2009-0-22386-5

  35. Morris MC, McMurdie HF, Evans EH, Paretzkin B, Parker HS, a.N.C.P.U.S (1981) Standard x-ray diffraction powder patterns, sect. 18 data for 58 substances. Department of Commerce/National Bureau of Standards, Gaithersburg

  36. Zhao L et al (2007) Crystallization of amorphous SiO2 microtubes catalyzed by lithium. Adv Func Mater 17(12):1952–1957. https://doi.org/10.1002/adfm.200601104.

    Article  CAS  Google Scholar 

Download references

Funding

Authors thank the Ministry of Education, Government of India, for the scholarship given to SD. The authors also acknowledge SVNIT-Surat for providing the necessary facility for the research work.

Author information

Authors and Affiliations

Authors

Contributions

SD carried out experiments and collected the data. VNL conceived the research, devised the research plan and guided the work thoroughly. SD and VNL designed the experiments, and interpreted the results. SD, CMP and VNL wrote the manuscript. VNL and CMP supervised the work.

Corresponding author

Correspondence to V. N. Lad.

Ethics declarations

No any animal was involved in this study. This work does not involve any animal testing.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Consent for Publication

All the authors give consent for publication of this work, here.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doke, S.D., Patel, C.M. & Lad, V.N. Improving Performance of the Synthesis of Silica Nanoparticles by Surfactant-incorporated Wet Attrition Milling. Silicon 14, 913–922 (2022). https://doi.org/10.1007/s12633-020-00871-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00871-x

Keywords

Navigation