Skip to main content
Log in

Analytical Study of TM-Polarized Surface Plasmon Polaritons in Nonlinear Multi-Layer Graphene-Based Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper presents an analytical study of transverse-magnetic-polarized surface plasmon polaritons (SPPs) in nonlinear multi-layer structures containing graphene sheets. In the general structure, each graphene sheet has been sandwiched between two different nonlinear magnetic materials. To show the richness of the proposed general waveguide, two novel nonlinear structures have been introduced and investigated as special cases of the general structure. It will be shown that the propagation features of these structures can be tuned by changing the chemical potential of the graphene and the incident mode power. A large value of the effective index, i.e., \({n}_{\mathrm{eff}}=240\) for the chemical potential of \({\mu }_{c}=0.2 ev\) and the incident power of \(\alpha {\left|{H}_{y,0}\right|}^{2}=3\) is obtained for the second structure at the frequency of 40 THz. The analytical results confirm that the integration of nonlinear magnetic materials with graphene sheets can control and enhance the propagating features and the self-focused of the field in the nonlinear layer. This integration gives more degrees of freedom to the designer to propose new THz components such as lasers and switches in the THz region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gonçalves PAD, Peres NM (2016) An introduction to graphene plasmonics. World Scientific

  2. Heydari MB, Samiei MHV (2020) Graphene-based couplers: a brief review. arXiv preprint arXiv:201009462

  3. Zhao Y, Wu L, Gan S et al (2019) High figure of merit lossy mode resonance sensor with graphene. Plasmonics 14(4):929–934

    Article  CAS  Google Scholar 

  4. Li Y, Peng X, Song J et al (2020) Ultrasensitive deep-ultraviolet surface plasmon resonance sensors using aluminum-graphene metasurface: a theoretical insight. Plasmonics 15(1):135–143

    Article  CAS  Google Scholar 

  5. Moazami A, Hashemi M, Shirazi NC (2019) High efficiency tunable graphene-based plasmonic filter in the THz frequency range. Plasmonics 14(2):359–363

    Article  CAS  Google Scholar 

  6. Heydari MB, Samiei MHV (2020) A short review on graphene-based filters: perspectives and challenges. arXiv preprint arXiv:201007176

  7. Wu J, Guo S, Li Z et al (2020) Graphene Hybrid Surface Plasmon Waveguide with Low Loss Transmission. Plasmonics 1–7

  8. Heydari MB, Samiei MHV (2018) Plasmonic graphene waveguides: a literature review. arXiv preprint arXiv:180909937

  9. Heydari MB, Vadjed Samiei MH (2020a) An analytical study of magneto-plasmons in anisotropic multi-layer structures containing magnetically biased graphene sheets. Plasmonics 15(4):1183–1198. https://doi.org/10.1007/s11468-020-01136-4

    Article  CAS  Google Scholar 

  10. Heydari MB, Vadjed Samiei MH (2020b) New analytical investigation of anisotropic graphene nano-waveguides with bi-gyrotropic cover and substrate backed by a PEMC layer. Opt Quant Electron 52(2):108. https://doi.org/10.1007/s11082-020-2222-0

    Article  CAS  Google Scholar 

  11. Heydari MB, Vadjed Samiei MH (2020c) Analytical study of hybrid surface plasmon polaritons in a grounded chiral slab waveguide covered with graphene sheet. Opt Quant Electron 52(9):406. https://doi.org/10.1007/s11082-020-02525-z

    Article  CAS  Google Scholar 

  12. Heydari MB, Samiei MHV (2020) Novel analytical model of anisotropic multi-layer cylindrical waveguides incorporating graphene layers. Photonics Nanostruct 42:100834

    Article  Google Scholar 

  13. Heydari MB, Samiei MHV (2020a) Analytical study of chiral multi-layer structures containing graphene sheets for THz applications. IEEE Trans Nanotechnol 19:653–660

    Article  CAS  Google Scholar 

  14. Heydari MB, Samiei MHV (2020b) A novel analytical study of anisotropic multi-layer elliptical structures containing graphene layers. IEEE Trans Magn 56(11):1–10. https://doi.org/10.1109/TMAG.2020.3025502

    Article  Google Scholar 

  15. Iqbal T (2015) Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr Appl Phys 15(11):1445–1452

    Article  Google Scholar 

  16. Vempati S, Iqbal T, Afsheen S (2015) Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J Appl Phys 118(4):043103

    Article  Google Scholar 

  17. Iqbal T (2018) Efficient excitation and amplification of the surface plasmons. Curr Appl Phys 18(11):1381–1387

    Article  Google Scholar 

  18. Eyni Z, Milanchian K (2020) Effect of nonlinear cap layer on TM-polarized surface waves in a graphene-based photonic crystal. Opt Quant Electron 52:1–13

    Article  Google Scholar 

  19. Smirnova DA, Shadrivov IV, Smirnov AI et al (2014) Dissipative plasmon-solitons in multilayer graphene. Laser Photonics Rev 8(2):291–296

    Article  CAS  Google Scholar 

  20. Wang G, Lu H, Liu X et al (2011) Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium. Appl Opt 50(27):5287–5290

    Article  CAS  Google Scholar 

  21. Walasik W, Rodriguez A, Renversez G (2015) Symmetric plasmonic slot waveguides with a nonlinear dielectric core: bifurcations, size effects, and higher order modes. Plasmonics 10(1):33–38

    Article  CAS  Google Scholar 

  22. Rukhlenko ID, Premaratne M, Agrawal GP (2011) Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications. Opt Express 19(1):206–217

    Article  Google Scholar 

  23. Hajian H, Soltani-Vala A, Kalafi M et al (2014) Surface plasmons of a graphene parallel plate waveguide bounded by Kerr-type nonlinear media. J Appl Phys 115(8):083104

    Article  Google Scholar 

  24. Hajian H, Rukhlenko ID, Leung PT et al (2016) Guided plasmon modes of a graphene-coated Kerr slab. Plasmonics 11(3):735–741

    Article  CAS  Google Scholar 

  25. Jiang X, Gao J, Sun X (2019) Control of dispersion properties in a nonlinear dielectric-graphene plasmonic waveguide. Physica E 106:176–179

    Article  CAS  Google Scholar 

  26. Bhagyaraj C, Ajith R, Vincent M (2017) Propagation characteristics of surface plasmon polariton modes in graphene layer with nonlinear magnetic cladding. J Opt 19(3):035002

    Article  Google Scholar 

  27. Wang Q, Awai I (1998) Frequency characteristics of the magnetic spatial solitons on the surface of an antiferromagnet. J Appl Phys 83(1):382–387

    Article  CAS  Google Scholar 

  28. Lim S-C (2002) Magnetic second-harmonic generation of an antiferromagnetic film. JOSA B 19(6):1401–1410

    Article  CAS  Google Scholar 

  29. Hamada MS, Shabat MM, Abd Elaal M et al (2003) Characteristics of TM surface waves in a nonlinear antiferromagnet–semiconductor–superconductor waveguide structure. J Supercond 16(2):443–447

    Article  CAS  Google Scholar 

  30. Almeida N, Mills D (1987) Nonlinear infrared response of antiferromagnets. Phys Rev B 36 (4):2015

  31. Boardman A, Shabat MM, Wallis R (1990) Nonlinear magnetodynamic waves on magnetic materials. Phys Rev B 41(1):717

    Article  CAS  Google Scholar 

  32. Gusynin V, Sharapov S, Carbotte J (2006) Magneto-optical conductivity in graphene. J Phys: Condens Matter 19(2):026222

    Google Scholar 

  33. Olver FW, Lozier DW, Boisvert RF et al (2010) NIST handbook of mathematical functions hardback and CD-ROM. Cambridge university press

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.B.Heydari performed the analytical modeling, conducted the numerical simulations by MATLAB, and wrote the manuscript. M.H. Vadjed Samiei supervised the project and reviewed the manuscript.

Corresponding author

Correspondence to Mohammad Hashem Vadjed Samiei.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M.B., Samiei, M.H.V. Analytical Study of TM-Polarized Surface Plasmon Polaritons in Nonlinear Multi-Layer Graphene-Based Waveguides. Plasmonics 16, 841–848 (2021). https://doi.org/10.1007/s11468-020-01336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01336-y

Keywords

Navigation