Skip to main content
Log in

Enhancement of Absorption and Effectiveness of a Perovskite Thin-Film Solar Cell Embedded with Gold Nanospheres

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper proposes a novel design of plasmonic perovskite solar cell (PSC). It consists of an anti-reflective glass of fluorine-doped tin oxide (FTO), a compact buffer layer of n-type titanium dioxide (TiO2), an absorbing thin-film layer of perovskite (MAPbI3) integrated with gold (Au) nanospheres, a layer of p-type doped spiro-OMeTAD, and a layer of the cathode on aluminum (Al). This multilayer design’s primary purpose is to allow the light to enter the PSC with the minimum reflection and trap it in the active layer due to the presence of Au nanospheres. In this layer, the higher efficiency of PSC is achieved by localized surface plasmon resonances (LSPRs) in the wavelength range from 300 to 1100 nm. A reflective Al layer is used at the bottom of the device to reflect the light into the upper layers to considerably enhance the PSC absorption. The three-dimensional finite-difference time-domain method was conducted to find the best solution to Maxwell’s equations so that the best thickness and radius can be selected for each layer and Au nanospheres, respectively. Proper physical dimensions and Au nanospheres played a significant role in numerically indicating that the proposed structures are 60% more absorbent than the other conventional PSCs. In-house simulation software is used to approximate the solar cell by applying the finite element method to develop solutions for the drift–diffusion and Poisson’s equations. The examinations of the previous studies revealed that the current study is the first study that has simulated the real model of Auger recombination in perovskite. The results indicated that the proposed PSC embedded with Au nanospheres has the following properties: the built-in potential of 3.16 V, short-circuit current of 27.97 mA/cm2, the open-circuit voltage of 1 V, maximum power of 24.84 mW/cm2, fill-factor of 0.88, the conduction band of 3 eV, electron quasi-Fermi level of 2.5 eV, the hole quasi-Fermi level of 0.6 eV, and efficiency of 24.84%. Finally, the suggested PSC has performed 62% more efficient than conventional PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ikhmayies S (2018) Advances in silicon solar cells. Jenny Stanford Publishing

  2. Singh G, Verma SS (2019) Design and analysis of thin film GaAs solar cells using silver nanoparticle plasmons. Photonics Nanostruct Fundam Appl 37:100731. https://doi.org/10.1016/j.photonics.2019.100731

    Article  Google Scholar 

  3. Singh G, Verma SS (2019) Plasmon enhanced light trapping in thin film GaAs solar cells by Al nanoparticle array. Phys Lett A 383:1526–1530. https://doi.org/10.1016/j.physleta.2019.02.008

    Article  CAS  Google Scholar 

  4. Tabrizi AA, Pahlavan A (2020) Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer. Opt Commun 454:124437. https://doi.org/10.1016/j.optcom.2019.124437

    Article  CAS  Google Scholar 

  5. Arisman (2014) Nitric Oxide Chemistry and Velocity Slip Effects in Hypersonic Boundary Layers

  6. Kosyachenko LA (2011) Solar Cells: Silicon Wafer-Based Technologies. BoD–Books on Demand

  7. Lee TD, Ebong AU (2017) A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev 70:1286–1297

    Article  CAS  Google Scholar 

  8. Girtan M (2012) Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol Energy Mater Sol Cells 100:153–161. https://doi.org/10.1016/j.solmat.2012.01.007

    Article  CAS  Google Scholar 

  9. Cardinaletti I, Vangerven T, Nagels S et al (2018) Organic and perovskite solar cells for space applications. Sol Energy Mater Sol Cells 182:121–127. https://doi.org/10.1016/j.solmat.2018.03.024

    Article  CAS  Google Scholar 

  10. Barnham KWJ, Ballard IM, Browne BC et al (2010) Recent progress in quantum well solar cells. Nanotechnology for Photovoltaics 511:187–210. https://doi.org/10.1201/9781420076752

    Article  Google Scholar 

  11. Wei J, Jia Y, Shu Q et al (2007) Double-walled carbon nanotube solar cells. Nano Lett 7:2317–2321. https://doi.org/10.1021/nl070961c

    Article  CAS  PubMed  Google Scholar 

  12. Yan J, Saunders BR (2014) Third-generation solar cells: A review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Advances 4:43286–43314. https://doi.org/10.1039/c4ra07064j

    Article  CAS  Google Scholar 

  13. Peng K, Wang X, Lee ST et al (2008) Silicon nanowire array photoelectrochemical solar cells. Appl Phys Lett 92:163103. https://doi.org/10.1063/1.2909555

    Article  CAS  Google Scholar 

  14. Chien SC, Chenb FC (2013) Polymer solar cells. Polymer Electronics 6:179–222. https://doi.org/10.4032/9789814364041

    Article  Google Scholar 

  15. Zarei K, Emami F (2020) Absorption enhancement and efficiency improvement of an organic solar cell embedded with core–shell Au@ITO nanoparticles. Opt Quant Electron 52:275. https://doi.org/10.1007/s11082-020-02401-w

    Article  CAS  Google Scholar 

  16. Peter LM (2007) Dye-sensitized nanocrystalline solar cells. Phys Chem Chem Phys 9:2630–2642. https://doi.org/10.1039/b617073k

    Article  CAS  PubMed  Google Scholar 

  17. Ameta R, Benjamin S, Sharma S, Trivedi M et al (2015) Dye-sensitized solar cells. Solar Energy Conversion and Storage: Photochemical Modes 10:85–113

    Google Scholar 

  18. Nazeeruddin MK, Baranoff E, Grätzel M et al (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85:1172–1178. https://doi.org/10.1016/j.solener.2011.01.018

    Article  CAS  Google Scholar 

  19. Ding IK, Zhu J, Cai W et al (2011) Plasmonic dye-sensitized solar cells. Adv Energy Mater 1:52–57. https://doi.org/10.1002/aenm.201000041

    Article  CAS  Google Scholar 

  20. Mathew S, Yella A, Gao P et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247. https://doi.org/10.1038/nchem.1861

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Li Y, Yang G et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:15027. https://doi.org/10.1038/NENERGY.2015.27

    Article  CAS  Google Scholar 

  22. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945. https://doi.org/10.1557/JMR.2004.0252

    Article  CAS  Google Scholar 

  23. Ke W, Kanatzidis MG (2019) Prospects for low-toxicity lead-free perovskite solar cells. Nat Commun 10:965. https://doi.org/10.1038/s41467-019-08918-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang Q, Zhao Y, Zhang X et al (2019) Surface passivation of perovskite film for efficient solar cells. Nat Photonics 13:460–466. https://doi.org/10.1038/s41566-019-0398-2

    Article  CAS  Google Scholar 

  25. Correa-Baena JP, Saliba M, Buonassisi T et al (2017) Promises and challenges of perovskite solar cells. Science 358:739–744. https://doi.org/10.1126/science.aam6323

    Article  CAS  PubMed  Google Scholar 

  26. Hwang T, Cho D, Kim J et al (2016) Investigation of chlorine-mediated microstructural evolution of CH3NH3PbI3(Cl) grains for high optoelectronic responses. Nano Energy 25:91–99. https://doi.org/10.1016/j.nanoen.2016.04.044

    Article  CAS  Google Scholar 

  27. Nanova D, Kast AK, Pfannmöller M et al (2014) Unraveling the nanoscale morphologies of mesoporous perovskite solar cells and their correlation to device performance. Nano Lett 14:2735–2740. https://doi.org/10.1021/nl5006838

    Article  CAS  PubMed  Google Scholar 

  28. Handa T, Yamada T, Kubota H et al (2017) Photocarrier recombination and injection dynamics in long-term stable lead-free CH3NH3SnI3 perovskite thin films and solar cells. J Phys Chem C 121:16158–16165. https://doi.org/10.1021/acs.jpcc.7b06199

    Article  CAS  Google Scholar 

  29. Yue L, Yan B, Attridge M, Wang Z et al (2016) Light absorption in perovskite solar cell. Sol Energy 124:143–152. https://doi.org/10.1016/j.solener.2015.11.028

    Article  CAS  Google Scholar 

  30. Guarnera S, Abate A, Zhang W et al (2015) Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J Phys Chem Lett 6:432–437. https://doi.org/10.1021/jz502703p

    Article  CAS  PubMed  Google Scholar 

  31. Park JH, Seo J, Park S et al (2015) Efficient ch3nh3pbi3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv Mater 27:4013–4019. https://doi.org/10.1002/adma.201500523

    Article  CAS  PubMed  Google Scholar 

  32. Son D-Y, Im J-H, Kim H-S, Park N-G et al (2014) 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118:16567–16573

    Article  CAS  Google Scholar 

  33. Zhang P, Wu J, Zhang T et al (2018) Perovskite Solar Cells with ZnO Electron-Transporting Materials. Adv Mater 30:1703737. https://doi.org/10.1002/adma.201703737

    Article  CAS  Google Scholar 

  34. Wang JTW, Ball JM, Barea EM et al (2014) Low-temperature processed electron collection layers of graphene/TiO 2 nanocomposites in thin film perovskite solar cells. Nano Lett 14:724–730. https://doi.org/10.1021/nl403997a

    Article  CAS  PubMed  Google Scholar 

  35. Kim HS, Lee JW, Yantara N et al (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13:2412–2417. https://doi.org/10.1021/nl400286w

    Article  CAS  PubMed  Google Scholar 

  36. Navab AA, Nemati A, Navab AA, Abad HMM et al (2018) Hydrothermal synthesis of TiO2 nanorod for using as an electron transport material in perovskite solar cells. AIP Conference Proceedings AIP Publishing LLC 1920(1):20015

    Article  Google Scholar 

  37. Tan H, Santbergen R, Smets AHM, Zeman M et al (2012) Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett 12:4070–4076. https://doi.org/10.1021/nl301521z

    Article  CAS  PubMed  Google Scholar 

  38. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP et al (2002) Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. J Phys Chem B 104:10549–10556. https://doi.org/10.1021/jp002435e

    Article  CAS  Google Scholar 

  39. Vincenzo A, Roberto P, Marco F et al (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys: Condens Matter 29:203002

    Google Scholar 

  40. Poortmans J, Arkhipov V (2006) Thin Film Solar Cells: Fabrication, Characterization and Applications (Wiley Series in Materials for Electronic & Optoelectronic Applications). John Wiley & Sons

  41. Noufi R, Zweibel K (2007) High-efficiency CdTe and CIGS thin-film solar cells: Highlights and challenges. In: Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4. IEEE, pp 317–320

  42. Bergenek K, Wiesmann C, Wirth R et al (2008) Enhanced light extraction efficiency from AlGaInP thin-film light-emitting diodes with photonic crystals. Appl Phys Lett 93:41105. https://doi.org/10.1063/1.2963030

    Article  CAS  Google Scholar 

  43. Lo Savio R, Miritello M, Shakoor A et al (2013) Enhanced 154 μm emission in Y-Er disilicate thin films on silicon photonic crystal cavities. Opt Express 21:10278. https://doi.org/10.1364/oe.21.010278

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Cheng J, Lin F et al (2016) Pinhole-free and surface-nanostructured niox film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10:1503–1511. https://doi.org/10.1021/acsnano.5b07043

    Article  CAS  PubMed  Google Scholar 

  45. Edwards D (1997) Gallium Selenide (GaSe). Academic press

  46. Ghosh G (1998) Handbook of Thermo-Optic Coefficients of Optical Materials with Applications. Academic Press

  47. Würfel P, Würfel U (2009) Physics of solar cells: from basic principles to advanced concepts, second updated and expanded edition. John Wiley & Sons

  48. Böer KW (1979) The physics of solar cells. World Scientific Publishing Company

  49. Osterwald CR, McMahon TJ (2009) History of accelerated and qualification testing. Prog Photovolt: Res Appl 17:11–33. https://doi.org/10.1002/pip

    Article  Google Scholar 

  50. Saghaei H, Van V (2019) Broadband mid-infrared supercontinuum generation in dispersion-engineered silicon-on-insulator waveguide. J Opt Soc Am B 36:A193. https://doi.org/10.1364/josab.36.00a193

    Article  CAS  Google Scholar 

  51. Ghanbari A, Kashaninia A, Sadr A, Saghaei H et al (2018) Supercontinuum generation with femtosecond optical pulse compression in silicon photonic crystal fibers at 2500 nm. Opt Quant Electron 50(11):411. https://doi.org/10.1007/s11082-018-1651-5

    Article  CAS  Google Scholar 

  52. Hosseinzadeh Sani M, Ghanbari A, Saghaei H et al (2020) An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure. Opt Quant Electron 52:295. https://doi.org/10.1007/s11082-020-02418-1

    Article  CAS  Google Scholar 

  53. Sani MH, Tabrizi AA, Saghaei H, Karimzadeh R et al (2020) An ultrafast all-optical half adder using nonlinear ring resonators in photonic crystal microstructure. Opt Quant Electron 52:107. https://doi.org/10.1007/s11082-020-2233-x

    Article  CAS  Google Scholar 

  54. Hosseinzadeh Sani M, Saghaei H, Mehranpour MA, Asgariyan Tabrizi A et al (2020) A novel all-optical sensor design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS accelerometers. Photonic Sensors. https://doi.org/10.1007/s13320-020-0607-0

    Article  Google Scholar 

  55. Saghaei H, Ebnali-Heidari M, Moravvej-Farshi MK et al (2015) Midinfrared supercontinuum generation via As_2Se_3 chalcogenide photonic crystal fibers. Appl Opt 54:2072. https://doi.org/10.1364/ao.54.002072

    Article  CAS  PubMed  Google Scholar 

  56. Saghaei H, Moravvej-Farshi MK, Ebnali-Heidari M, Moghadasi MN et al (2016) Ultra-wide mid-infrared supercontinuum deneration in As40Se60 chalcogenide fibers: solid core PCF versus SIF. IEEE J Sel Top Quantum Electron 22(2):279–286. https://doi.org/10.1109/JSTQE.2015.2477048

    Article  CAS  Google Scholar 

  57. Diouf M, Ben SA, Cherif R et al (2017) Super-flat coherent supercontinuum source in As_388Se_612 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl Opt 56:163. https://doi.org/10.1364/ao.56.000163

    Article  CAS  PubMed  Google Scholar 

  58. Saghaei H (2018) Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation. Appl Opt 57:5591. https://doi.org/10.1364/ao.57.005591

    Article  CAS  PubMed  Google Scholar 

  59. Saghaei H, Zahedi A, Karimzadeh R, Parandin F et al (2017) Line defects on photonic crystals for the design of all-optical power splitters and digital logic gates. Superlattices Microstruct 110:133–138. https://doi.org/10.1016/j.spmi.2017.08.052

    Article  CAS  Google Scholar 

  60. Kalantari M, Karimkhani A, Saghaei H et al (2018) Ultra-Wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique. Optik 158:142–151. https://doi.org/10.1016/j.ijleo.2017.12.014

    Article  CAS  Google Scholar 

  61. Ebnali-Heidari M, Saghaei H, Koohi-Kamali F et al (2014) Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers. IEEE J Sel Top Quantum Electron 20(5):582–589. https://doi.org/10.1109/JSTQE.2014.2307313

    Article  CAS  Google Scholar 

  62. Saghaei H (2017) Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach. Radioengineering 26:16–22. https://doi.org/10.13164/re.2017.0016

    Article  Google Scholar 

  63. Naghizade S, Saghaei H (2020) A novel design of all-optical 4 to 2 encoder with multiple defects in silica-based photonic crystal fiber. Optik 222:165419. https://doi.org/10.1016/j.ijleo.2020.165419

    Article  CAS  Google Scholar 

  64. Saghaei H, Heidari V, Ebnali-Heidari M, Yazdani MR et al (2016) A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik 127:11938–11947. https://doi.org/10.1016/j.ijleo.2016.09.111

    Article  CAS  Google Scholar 

  65. Aliee M, Mozaffari MH, Saghaei H et al (2020) Dispersion-flattened photonic quasicrystal optofluidic fiber for telecom C band operation. Photonics Nanostruct Fundam Appl 40:100797. https://doi.org/10.1016/j.photonics.2020.100797

    Article  Google Scholar 

  66. Ghanbari A, Kashaninia A, Sadr A, Saghaei H et al (2017) Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber. Optik 140:545–554. https://doi.org/10.1016/j.ijleo.2017.04.099

    Article  CAS  Google Scholar 

  67. Saghaei H, Ghanbari A (2017) White light generation using photonic crystal fiber with sub-micron circular lattice. Journal of Electrical Engineering 68:282–289. https://doi.org/10.1515/jee-2017-0040

    Article  Google Scholar 

  68. Kowsari A, Saghaei H (2018) Resonantly enhanced all-optical switching in microfibre Mach-Zehnder interferometers. Electron Lett 54:229–231. https://doi.org/10.1049/el.2017.4056

    Article  Google Scholar 

  69. Naghizade S, Saghaei H (2020) Tunable graphene-on-insulator band-stop filter at the mid-infrared region. Opt Quant Electron 52:224. https://doi.org/10.1007/s11082-020-02350-4

    Article  CAS  Google Scholar 

  70. Akinwande D, Petrone N, Hone J et al (2014) Two-dimensional flexible nanoelectronics. Nat Commun 5:1–12. https://doi.org/10.1038/ncomms6678

    Article  CAS  Google Scholar 

  71. Raei R, Ebnali-Heidari M, Saghaei H et al (2018) Supercontinuum generation in organic liquid–liquid core-cladding photonic crystal fiber in visible and near-infrared regions: publisher’s note. J Opt Soc Am B 35:1545. https://doi.org/10.1364/josab.35.001545

    Article  Google Scholar 

  72. Tavakoli F, Zarrabi FB, Saghaei H et al (2019) Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region. Appl Opt 58:5404–5414

    Article  CAS  Google Scholar 

  73. Shen JX, Zhang X, Das S et al (2018) Unexpectedly strong Auger recombination in halide perovskites. Adv Energy Mater 8:1801027. https://doi.org/10.1002/aenm.201801027

    Article  CAS  Google Scholar 

  74. Liu M, Johnston MB, Snaith HJ et al (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398. https://doi.org/10.1038/nature12509

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Afsaneh Asgariyan Tabrizi: designed the solar cell, developed the theory, and performed the computations. Hamed Saghaei: improved the solar cell structure, developed the theoretical formalism, performed the analytic calculations, and carried out the numerical optical and electrical simulations. Mohammad Amin Mehranpour: analyzed the data, validated the data, and co-wrote the paper. Mehdi Jahangiri: worked out almost all of the technical details, contributed to the design and implementation of the research and co-wrote the paper.

Corresponding author

Correspondence to Afsaneh Asgariyan Tabrizi.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Consent to Participate

The authors of this paper voluntarily agree to participate in this research study.

Consent to Publish

The Author hereby grants the Publisher permission to publish the Work in Plasmonics.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabrizi, A.A., Saghaei, H., Mehranpour, M.A. et al. Enhancement of Absorption and Effectiveness of a Perovskite Thin-Film Solar Cell Embedded with Gold Nanospheres. Plasmonics 16, 747–760 (2021). https://doi.org/10.1007/s11468-020-01341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01341-1

Keywords

Navigation