Skip to main content
Log in

Multimode Interference-Based Photonic Crystal Fiber Glucose Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, a photonic crystal fiber (PCF) glucose sensor having high sensitivity is proposed based on multimode interference (MMI). Guiding properties of the sensor are examined by the finite element method (FEM). Sensing properties of the sensor are evaluated based on the fiber properties such as birefringence, coupling length, and transmittance. Numerical investigation shows that the proposed sensor yields to promise an extremely high sensitivity of 50,505 nm/refractive index unit (RIU) and 6 nm/g/L with high linearity of 98.64%. Furthermore, the average sensitivity of the proposed sensor is also high as 30,890 nm/RIU and 3.67 nm/g/L in the glucose concentration (GC) range from 0 to 100 g/L. Moreover, the measurement resolution of the sensor is 0.54 mg/dL which is smaller than 70 mg/dL for efficient detection of hypoglycemia episodes. Owing to simple structure and high sensitivity with good resolution, this sensor can be applied for GC measurement effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be available upon request to the corresponding author.

References

  1. W. Organization (2016) Global report on diabetes. http://www.who.int/diabetes/global-report/en/

  2. Yeh Y-L (2008) Real-time measurement of glucose concentration and average refractive index using a laser interferometer. Opt Lasers Eng 46:666–670

    Article  Google Scholar 

  3. Fang Y-L, Wang C-T, Chiang C-C (2016) A small U-shaped bending-induced interference optical fiber sensor for the measurement of glucose solutions. Sensors 16:1460

    Article  Google Scholar 

  4. Lidiya AE, Raja RVJ, Ngo QM, Vigneswaran D (2019) Detecting hemoglobin content blood glucose using surface plasmon resonance in D-shaped photonic crystal fiber. Opt Fiber Technol 50:132–138

    Article  CAS  Google Scholar 

  5. Yang X, Lu Y, Wang M, Yao J (2016) A photonic crystal fiber glucose sensor filled with silver nanowires. Opt Commun 359:279–284

    Article  CAS  Google Scholar 

  6. Maheswaran S, Kuppusamy P, Ramesh S, Sundararajan T, Yupapin P (2018) Refractive index sensor using dual core photonic crystal fiber–glucose detection applications. Results Phys 11:577–578

    Article  Google Scholar 

  7. Ayyanar N, Raja GT (2018) Design of glucose sensor using tri-core modified photonic crystal fiber. IEEE Sensors 1–4

  8. Natesan A, Govindasamy KP, Gopal TR, Dhasarathan V, Aly AH (2018) Tricore photonic crystal fibre based refractive index sensor for glucose detection. IET Optoelectron 13:118–123

    Article  Google Scholar 

  9. Thenmozhi H, Rajan MM, Devika V, Vigneswaran D, Ayyanar N (2017) D-glucose sensor using photonic crystal fiber. Optik 145:489–494

    Article  CAS  Google Scholar 

  10. An G, Li S, An Y, Wang H, Zhang X (2017) Glucose sensor realized with photonic crystal fiber-based Sagnac interferometer. Opt Commun 405:143–146

    Article  CAS  Google Scholar 

  11. Areed NF, Hameed MFO, Obayya S (2017) Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. Opt Quant Electron 49:5

    Article  Google Scholar 

  12. Zhang Y, Li N, Xiang Y, Wang D, Zhang P, Wang Y et al (2020) A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 156:506–513

    Article  CAS  Google Scholar 

  13. Biswas S, Kole A, Sarkar R, Kumbhakar P (2014) Synthesis of anisotropic nanostructures of silver for its possible applications in glucose and temperature sensing. Mater Res Express 1:045043

    Article  CAS  Google Scholar 

  14. Zhang W, Du Y, Wang ML (2015) On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase. Sens Biosensing Res 4:96–102

    Article  Google Scholar 

  15. Al Mahfuz M, Mollah MA, Momota MR, Paul AK, Masud A, Akter S et al (2019) Highly sensitive photonic crystal fiber plasmonic biosensor: design and analysis. Opt Mater 90:315–321

    Article  Google Scholar 

  16. Rifat AA, Haider F, Ahmed R, Mahdiraji GA, Adikan FM, Miroshnichenko AE (2018) Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt Lett 43:891–894

    Article  CAS  Google Scholar 

  17. Haider F, Aoni RA, Ahmed R, Miroshnichenko AE (2018) Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor. JOSA B 35:2816–2821

    Article  CAS  Google Scholar 

  18. Mollah MA, Islam MS Novel single hole exposed-suspended core localized surface plasmon resonance sensor. IEEE Sens J. https://doi.org/10.1109/JSEN.2020.3023975

  19. Mollah MA, Razzak SMA, Paul AK, Hasan MR (2019) Microstructure optical fiber based plasmonic refractive index sensor. Sens Biosensing Res 24:100286

    Article  Google Scholar 

  20. Zhao Y, Xia F, Hu H-F, Chen M-Q (2017) A novel photonic crystal fiber Mach-Zehnder interferometer for enhancing refractive index measurement sensitivity. Opt Commun 402:368–374

    Article  CAS  Google Scholar 

  21. Huang J, Lan X, Wang H, Yuan L, Wei T, Gao Z et al (2012) Polymer optical fiber for large strain measurement based on multimode interference. Opt Lett 37:4308–4310

    Article  Google Scholar 

  22. Dong X, Du H, Luo Z, Duan JA (2018) Highly sensitive strain sensor based on a novel Mach-Zehnder interferometer with TCF-PCF structure. Sensors 18:278

    Article  Google Scholar 

  23. Li E (2007) Temperature compensation of multimode-interference-based fiber devices. Opt Lett 32:2064–2066

    Article  Google Scholar 

  24. Liu H, Yang H, Qiao X, Wang Y, Liu X, Lee Y-S et al (2017) Curvature and temperature measurement based on a few-mode PCF formed MZI and an embedded FBG. Sensors 17:1725

    Article  Google Scholar 

  25. De M, Singh VK (2018) Magnetic fluid infiltrated dual core photonic crystal fiber based highly sensitive magnetic field sensor. Opt Laser Technol 106:61–68

    Article  CAS  Google Scholar 

  26. Mollah MA, Usha RJ, Tasnim S, Ahmed K (2020) Detection of cancer affected cell using Sagnac interferometer based photonic crystal fiber refractive index sensor. Opt Quant Electron 52:1–12

    Article  Google Scholar 

  27. Mollah MA, Yousufali M, Faysal MRBA, Hasan MR, Hossain MB, Amiri I (2020) Highly sensitive photonic crystal fiber salinity sensor based on sagnac interferometer. Results Phys 16:103022

    Article  Google Scholar 

  28. Islam MS, Sultana J, Rifat AA, Ahmed R, Dinovitser A, Ng BW-H et al (2018) Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt Express 26:30347–30361

    Article  CAS  Google Scholar 

  29. Nielsen K, Noordegraaf D, Sørensen T, Bjarklev A, Hansen TP (2005) Selective filling of photonic crystal fibres. J Opt A: Pure Appl Opt 7:L13

    Article  CAS  Google Scholar 

  30. Wang Y, Liao C, Wang D (2010) Femtosecond laser-assisted selective infiltration of microstructured optical fibers. Opt Express 18:18056–18060

    Article  CAS  Google Scholar 

  31. Wang F, Yuan W, Hansen O, Bang O (2011) Selective filling of photonic crystal fibers using focused ion beam milled microchannels. Opt Express 19:17585–17590

    Article  CAS  Google Scholar 

  32. Jabin MA, Ahmed K, Rana MJ, Paul BK, Islam M, Vigneswaran D et al (2019) Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J 11:1–10

    Article  Google Scholar 

  33. Ahmed K, Paul BK, Vasudevan B, Rashed ANZ, Maheswar R, Amiri I et al (2019) Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application. Results Phys 12:2021–2025

    Article  Google Scholar 

  34. Saitoh K, Sato Y, Koshiba M (2003) Coupling characteristics of dual-core photonic crystal fiber couplers. Opt Express 11:3188–3195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.A. Mollah; Data curation, Formal analysis, Investigation, Methodology, M. Yousufali, M.A. Mollah; Funding acquisition, M.A. Mollah, K. Ahmed; Project administration, M.A. Mollah, K. Ahmed; Resources, Software, M.A. Mollah, K. Ahmed; Supervision, M.A. Mollah, K. Ahmed; Validation, M.A. Mollah, K. Ahmed; Visualization, M. Yousufali; Writing—original draft, M. Yousufali, M.A. Mollah; Writing—review editing, M.A. Mollah, K Ahmed.

Corresponding author

Correspondence to Kawsar Ahmed.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousufali, M., Mollah, M.A. & Ahmed, K. Multimode Interference-Based Photonic Crystal Fiber Glucose Sensor. Plasmonics 16, 811–818 (2021). https://doi.org/10.1007/s11468-020-01349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01349-7

Keywords

Navigation