Skip to main content
Log in

Efficient structures for fault-tolerant majority gate in quantum-dot cellular automata

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) technology is a proper alternative to CMOS circuits, which is a Nano-scale technology that is capable of designing and implementing logic circuits via high efficiency and low power. In this regard, one of the major challenges to design the circuit at QCA is the loss, addition, cells, rotation, and displacement of the cells. Some solutions have been provided to handle these challenges. In this paper, three new structures are proposed to increase the fault tolerance in the three-input majority gate. QCA Designer implements the proposed structures. The simulation results show an increase in fault tolerance and an improvement in the number of cells and space requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ahmadpour, S.S., Mosleh, M.: A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J. Supercomput. 74(9), 4696–4716 (2018)

    Article  Google Scholar 

  • Asfestani, M. N., Heikalabad S. R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Physica B: Condensed Matter 512, 91–99 (2017)

    Article  ADS  Google Scholar 

  • Beard, M.J.: Design and simulation of fault-tolerant quantum-dot cellular automata (QCA) NOT gates. Dissertation, Wichita State University (2006)

  • Chandra, J.S., Suresh, K., Ghosh, B.: Clocking scheme implementation for multi-layered quantum dot cellular automata design. J. Low Power Electron. 10(2), 272–278 (2014)

    Article  Google Scholar 

  • Das, K., De, D.: QCA defect and fault analysis of diverse nanostructure for implementing logic gate. Int. J. Recent Trends Eng. Technol. 3(1), 1–5 (2010)

    Google Scholar 

  • Du, H., Lv, H., Zhang, Y., Peng, F., Xie, G.: Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J. Comput. Electron. 15(4), 1484–1497 (2016)

    Article  Google Scholar 

  • Dysart, T.J., Kogge, P.M, Lent, C.S.: An analysis of missing cell defects in quantum-dot cellular automata (2017)

  • Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays 7(2), 177–189 (2012)

    Google Scholar 

  • Heikalabad, S. R., Asfestani M. N., Hosseinzadeh, M.: Content addressable memory cell in quantum-dot cellular automata. Microelectronic Eng. 163, 140–150 (2016)

    Article  Google Scholar 

  • Heikalabad, S. R., Asfestani M. N., Hosseinzadeh, M.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomputing 74(5), 1994–2005 (2018)

    Article  Google Scholar 

  • Heikalabad, S. R., Salimzadeh, F., Barughi Y. Z.: A unique three-layer full adder in quantum-dot cellular automata. Comput. Electric. Eng. 86, 106735 (2020)

    Article  Google Scholar 

  • Hosseinzadeh, H., Heikalabad, S.R.: A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron. Eng. 192, 52–60 (2018)

    Article  Google Scholar 

  • Huang, J., Momenzadeh, M., Lombardi, F.: On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J. Electron. Test. 23(2–3), 163–174 (2007). https://doi.org/10.1007/s10836-006-0548-6

    Article  Google Scholar 

  • Karim, F., Walus, K.: Efficient simulation of correlated dynamics in quantum-dot cellular automata (QCA). IEEE Trans. Nanotechnol. 13(2), 294–307 (2014)

    Article  ADS  Google Scholar 

  • Karkaj, E. T., Heikalabad S. R.: A testable parity conservative gate in quantum-dot cellular automata. Superlattices Microstruct. 101, 625–632 (2017)

    Article  ADS  Google Scholar 

  • Kumar, D., Mitra, D.: Design of a practical fault-tolerant adder in quantumdot cellular automata. Microelectron. J. 53, 90–104 (2016)

    Article  Google Scholar 

  • Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  ADS  Google Scholar 

  • Meirav, U., Kastner, M.A., Wind, S.J.: Singleelectron charging and periodic conductance resonances in GaAs nanostructures. Phys. Rev. Lett. 65(6), 771–774 (1990)

    Article  ADS  Google Scholar 

  • Moghimizadeh, T., Mosleh, M.: A novel design of fault-tolerant RAM cell in quantum-dot cellular automata with physical verification. J. Supercomput. 75, 5688–5716 (2019). https://doi.org/10.1007/s11227-019-02812-x

    Article  Google Scholar 

  • Mohammadi, M., Gorigin, S.: An efficient design of full adder in quantum-dot cellular automata technology. Microelectron. J. 50, 38–43 (2016)

    Article  Google Scholar 

  • Momenzadeh, M., Ottavi, M., Lombardi, F.: Modeling QCA defects at molecular-level in combinational circuits. In: 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2005. DFT (2005)

  • Norouzi, M., Heikalabad, S. R., Salimzadeh, F.: A reversible ALU using HNG and Ferdkin gates in QCA nanotechnology. Int. J. Circuit Theory Appl. 48(8), 1291–1303 (2020)

    Article  Google Scholar 

  • Reed, M.A., Randall, J.N., Aggarwal, R.J., Matyi, R.J., Moore, T.M., Wetsel, A.E.: Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys. Rev. Lett. 60, 535–539 (1988)

    Article  ADS  Google Scholar 

  • Roohi, A., Sayedsalehi, S., Khademolhosseini, H., Navi, K.: Design and evaluation of a reconfigurable fault tolerant quantum-dot cellular automata gate. J. Comput. Theor. Nanosci. 10, 380–388 (2013)

    Article  Google Scholar 

  • Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient faulttolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  • Salimzadeh, F., Heikalabad, S. R.: Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Physica B: Condensed Matter 556, 163–169 (2019)

    Article  ADS  Google Scholar 

  • Salimzadeh, F., Heikalabad S. R., Gharehchopogh F. S.: Design of a reversible structure for memory in quantum‐dot cellular automata. Int. J. Circuit Theory Appl. 48(12), 2257–2265 (2020)

    Article  Google Scholar 

  • Sen, B., Rajoria, A., Sikdar, B.K.: Design of efficient full adder in quantum-dot cellular automata. Sci. World J. 10, 1–10 (2013)

  • Sen, B., et al.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J (2014). https://doi.org/10.1016/j.mejo.2014.08.012i

    Article  Google Scholar 

  • Sen, B., Sahu, Y., Mukherjee, R., Nath, R.K., Sikdar, B.K.: On the reliability of majority logic structure in quantum-dot cellular automata. Microelectron. J. 47, 7–18 (2016a)

    Article  Google Scholar 

  • Sen, B., Dutta, M., Mukherjee, R., et al.: Towards the design of hybrid QCA tiles targeting high fault tolerance. J. Comput. Electron. 15(2), 429–445 (2016b)

    Article  Google Scholar 

  • Sun, M., Lv, H., Zhang, Y., Xie, G.: The fundamental primitives with fault-tolerance in quantum-dot cellular automata. J. Electron. Test. 34(2), 109–122 (2018)

    Article  Google Scholar 

  • Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  ADS  Google Scholar 

  • Walus, K., et al.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  • Wilson, M., Kannangara, K., Smith, G., Simmons, M., Raquse, B.: Nanotechnology: Basic Science and Emerging Technologies. Chapman and Hall, London (2002)

    Book  Google Scholar 

  • Zhang, Y., Xie, G., Han, J.: A robust wire crossing design for thermostability and fault tolerance in quantum-dot cellular automata. Microprocess. Microsyst. 74, 103033 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rasouli Heikalabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, Y., Heikalabad, S.R. & Mosleh, M. Efficient structures for fault-tolerant majority gate in quantum-dot cellular automata. Opt Quant Electron 53, 45 (2021). https://doi.org/10.1007/s11082-020-02691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02691-0

Keywords

Navigation