Skip to main content
Log in

Multiscale simulations of interfacial slip for polymer melts under shear flow

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The low shear rate interfacial slip behaviors of nonentangled bead–spring polymer melts are firstly simulated using a multiscale method without constitutive relations and wall slip hypotheses. Two orders of magnitude less computation compared with pure molecular dynamics simulations offers the present multiscale method unique capability to resolve the low shear rate slip problems for complex fluids, and to explore the impacts of bulk viscosity and interfacial friction coefficient on slip phenomenon detailedly. Variation of wall–fluid interaction (WFI) can lead to completely opposite trends of rate-dependent slip. For weak WFI, two distinct slip regimes including rate-independent regime and rapid increase regime can be found due to the competition between bulk viscosity and interfacial friction coefficient. For moderate WFI, the complete dominance of the bulk viscosity leads to a linear relation between the slip length and the bulk viscosity and two distinct regimes composed of rate-independent regime and rapid decrease regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bao L, Priezjev NV, Hu H, Luo K (2017) Effects of viscous heating and wall-fluid interaction energy on rate-dependent slip behavior of simple fluids. Phys Rev E 96(3):033110

    Article  Google Scholar 

  • Barraud C, Cross B, Picard C, Restagno F, Léger L, Charlaix E (2019) Large slippage and depletion layer at the polyelectrolyte/solid interface. Soft Matter 15(31):6308–6317

    Article  Google Scholar 

  • Bocquet L, Barrat JL (2007) Flow boundary conditions from nano-to micro-scales. Soft Matter 3(6):685–693

    Article  Google Scholar 

  • Cao BY, Chen M, Guo ZY (2006) Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation. Int J Eng Sci 44(13–14):927–937

    Article  Google Scholar 

  • Cosden IA, Lukes JR (2013) A hybrid atomistic-continuum model for fluid flow using lammps and openfoam. Comput Phys Commun 184(8):1958–1965

    Article  Google Scholar 

  • De S (2013) Computational study of the propagation of the longitudinal velocity in a polymer melt contained within a cylinder using a scale-bridging method. Phys Rev E 88(5):052311

    Article  Google Scholar 

  • De S, Fish J, Shephard MS, Keblinski P, Kumar SK (2006) Multiscale modeling of polymer rheology. Physi Rev E 74(3):030801

    Article  Google Scholar 

  • Drikakis D, Asproulis N, Shapiro E, Benke M (2010) Computational strategies for micro-and nanofluid dynamics. Microfluid Dev Nanotechnol Fund Concepts 4:97–153

    Article  Google Scholar 

  • Evans DJ, Morriss G (1984) Nonlinear-response theory for steady planar couette flow. Phys Rev A 30(3):1528

    Article  Google Scholar 

  • Grest GS, Kremer K (1986) Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev A 33(5):3628

    Article  Google Scholar 

  • Hénot M, Grzelka M, Zhang J, Mariot S, Antoniuk I, Drockenmuller E, Léger L, Restagno F (2018) Temperature-controlled slip of polymer melts on ideal substrates. Phys Rev Lett 121(17):177802

    Article  Google Scholar 

  • Hsu H, Patankar N (2010) A continuum approach to reproduce molecular-scale slip behaviour. J Fluid Mech 645:59

    Article  MathSciNet  Google Scholar 

  • Irving J, Kirkwood JG (1950) The statistical mechanical theory of transport processes. iv. the equations of hydrodynamics. J chem Phys 18(6):817–829

  • Jabbarzadeh A, Atkinson J, Tanner R (2000) Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of couette shear flow between two sinusoidal walls. Physi Rev E 61(1):690

    Article  Google Scholar 

  • Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys 92(8):5057–5086

    Article  Google Scholar 

  • Kröger M, Hess S (2000) Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics. Phys Rev Lett 85(5):1128

    Article  Google Scholar 

  • Larson RG, Desai PS (2015) Modeling the rheology of polymer melts and solutions. Annu Rev Fluid Mech 47:47–65

    Article  MathSciNet  Google Scholar 

  • Lees A, Edwards S (1972) The computer study of transport processes under extreme conditions. J Phys C Solid State Phys 5(15):1921

  • Lichter S, Martini A, Snurr RQ, Wang Q (2007) Liquid slip in nanoscale channels as a rate process. Phys Rev Lett 98(22):226001

    Article  Google Scholar 

  • Lockerby DA, Duque-Daza CA, Borg MK, Reese JM (2013) Time-step coupling for hybrid simulations of multiscale flows. J Comput Phys 237:344–365

    Article  MathSciNet  Google Scholar 

  • Malkin AY, Patlazhan S (2018) Wall slip for complex liquids-phenomenon and its causes. Adv Coll Interface Sci 257:42–57

    Article  Google Scholar 

  • Martini A, Hsu HY, Patankar NA, Lichter S (2008a) Slip at high shear rates. Phys Rev Lett 100(20):206001

    Article  Google Scholar 

  • Martini A, Roxin A, Snurr RQ, Wang Q, Lichter S (2008b) Molecular mechanisms of liquid slip. J Fluid Mech 600:257–269

    Article  Google Scholar 

  • Niavarani A, Priezjev NV (2008a) Rheological study of polymer flow past rough surfaces with slip boundary conditions. J Chem Phys 129(14):144902

    Article  Google Scholar 

  • Niavarani A, Priezjev NV (2008b) Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces. Phys Rev E 77(4):041606

    Article  Google Scholar 

  • O’connell ST, Thompson PA (1995) Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows. Phys Rev E 52(6):R5792

  • Priezjev NV (2009) Shear rate threshold for the boundary slip in dense polymer films. Phys Rev E 80(3):031608

    Article  Google Scholar 

  • Priezjev NV, Troian SM (2004) Molecular origin and dynamic behavior of slip in sheared polymer films. Phys Rev Lett 92(1):018302

    Article  Google Scholar 

  • Pye JE, Wood CE, Burton JC (2018) Precursors to molecular slip on smooth hydrophobic surfaces. Phys Rev Lett 121(13):134501

    Article  Google Scholar 

  • Robbins M (1997) All stressed out. Nature 389(6649):331–333

    Article  Google Scholar 

  • Servantie J, Müller M (2008) Temperature dependence of the slip length in polymer melts at attractive surfaces. Phys Rev Lett 101(2):026101

    Article  Google Scholar 

  • Sochi T (2011) Slip at fluid-solid interface. Polym Rev 51(4):309–340

    Article  Google Scholar 

  • Sparreboom W, van den Berg A, Eijkel JC (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4(11):713

    Article  Google Scholar 

  • Sun J, Wang W, Wang HS (2013) Dependence of nanoconfined liquid behavior on boundary and bulk factors. Phys Rev E 87(2):023020

    Article  Google Scholar 

  • Sun J, Wang W, Wang HS (2015) Viscous dissipation effect in nano-confined shear flows: a comparative study between molecular dynamics and multi-scale hybrid simulations. Microfluid Nanofluid 18(1):103–109

    Article  MathSciNet  Google Scholar 

  • Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389(6649):360–362

    Article  Google Scholar 

  • Tong ZX, He YL, Tao WQ (2019) A review of current progress in multiscale simulations for fluid flow and heat transfer problems: the frameworks, coupling techniques and future perspectives. Int J Heat Mass Transfer 137:1263–1289

    Article  Google Scholar 

  • Yang J, Wan Z, Wang L, Sun D (2018) A study on slip characteristics using hybrid particle-continuum method. J Fluids Eng 140(10)

  • Yasuda S, Yamamoto R (2010) Multiscale modeling and simulation for polymer melt flows between parallel plates. Phys Rev E 81(3):036308

    Article  Google Scholar 

  • Yasuda S, Yamamoto R (2011) Dynamic rheology of a supercooled polymer melt in nonuniform oscillating flows between rapidly oscillating plates. Phys Rev E 84(3):031501

    Article  Google Scholar 

  • Yasuda S, Yamamoto R (2014) Synchronized molecular-dynamics simulation via macroscopic heat and momentum transfer: an application to polymer lubrication. Phys Rev X 4(4):041011

    Google Scholar 

  • Yong X, Zhang LT (2013a) Slip in nanoscale shear flow: mechanisms of interfacial friction. Microfluid Nanofluid 14(1–2):299–308

    Article  Google Scholar 

  • Yong X, Zhang LT (2013b) Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. J Chem Phys 138(8):084503

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support of this work by the National Natural Science Foundation of China (U1730124,11972338,11621202), and the Fundamental Research Funds for the Central Universities. The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of the University of Science and Technology of China. The authors thank Prof. Dr. Nikolai V. Priezjev of the Wright State University for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Hua Qin or De Jun Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H.J., Qin, F.H., Wan, Z.H. et al. Multiscale simulations of interfacial slip for polymer melts under shear flow. Microfluid Nanofluid 25, 9 (2021). https://doi.org/10.1007/s10404-020-02407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-020-02407-6

Keywords

Navigation