Skip to main content

Advertisement

Log in

Long-term Impact of Gold and Platinum on Microbial Diversity in Australian Soils

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The effects of platinum (Pt) and gold (Au) and on the soil bacterial community was evaluated in four different Australian soil types (acidic Burn Grounds (BGR), organic matter–rich Fox Lane, high silt/metal Pinpinio (PPN), and alkali Minnipa (MNP) spiked with either Pt or Au at 1, 25, and 100 mg kg−1 using a next-generation sequencing approach (amplicon-based, MiSeq). Soil type and metal concentrations were observed to be key drivers of Pt and Au effects on soil microbial community structure. Different trends were therefore observed in the response of the bacterial community to Pt and Au amendments; however in each soil type, Pt and Au amendment caused a detectable shift in community structure that in most samples was positively correlated with increasing metal concentrations. New dominant groups were only observed in BGR and PPN soils at 100 mg kg−1 (Kazan-3B-28 and Verrucomicrobia groups (BGR, Pt) and Firmicutes and Caldithrix groups (PPN, Pt) and WS2 (BGR, Au). The effects of Pt on soil microbial diversity were largely adverse at 100 mg kg−1 and were pronounced in acidic, basic, and metal/silt-rich soils. However, this effect was concentration-related; Au appeared to be more toxic to soil bacterial communities than Pt at 25 mg kg−1 but Pt was more toxic at 100 mg kg−1. More bacterial groups such as those belonging to Burkholderiales/Burkholderiaceae, Alicyclobacillaceae, Rubrobacteraceae, Cytophagaceae, Oxalobacteraceae were selectively enriched by Pt compared to Au (Sphingomonadaceae and Rhodospirillaceae) amendments irrespective of soil type. The research outcomes have important implications in the management (remediation) of Pt- and Au-contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Freyschlag CG, Madix RJ (2011) Precious metal magic: catalytic wizardry. Mater Today 14(4):134–142

    Article  CAS  Google Scholar 

  2. Bencs L, Ravindra K, Van Grieken R (2003) Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters. Spectrochim Acta Part B At Spectrosc 58(10):1723–1755. https://doi.org/10.1016/S0584-8547(03)00162-9

    Article  CAS  Google Scholar 

  3. Rao CRM, Reddi GS (2000) Platinum group metals (PGM); occurrence, use and recent trends in their determination. Trends Anal Chem 19(9):565–586. https://doi.org/10.1016/S0165-9936(00)00031-5

    Article  CAS  Google Scholar 

  4. Rajapaksha RM, Tobor-Kaplon MA, Baath E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70(5):2966–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ayesh R, Mitchell SC, Waring RH, Withrington RH, Seifert MH, Smith RL (1987) Sodium aurothiomalate toxicity and sulphoxidation capacity in rheumatoid arthritic patients. Br J Rheumatol 26(3):197–201

    Article  CAS  PubMed  Google Scholar 

  6. Evron E, Brautbar C, Becker S, Fenakel G, Abend Y, Sthoeger Z, Cohen P, Geltner D (1995) Correlation between gold-induced enterocolitis and the presence of the HLA-DRB 1* 0404 allele. Arthritis Rheum 38(6):755–759

    Article  CAS  PubMed  Google Scholar 

  7. Bruze M, Edman B, Bjorkner B, Moller H (1994) Clinical relevance of contact allergy to gold sodium thiosulfate. J Am Acad Dermatol 31(4):579–583

    Article  CAS  PubMed  Google Scholar 

  8. Cederbrant K, Hultman P, Marcusson JA, Tibbling L (1997) In vitro lymphocyte proliferation as compared to patch test using gold, palladium and nickel. Int Arch Allergy Immunol 112(3):212–217

    Article  CAS  PubMed  Google Scholar 

  9. Svedman C, Tillman C, Gustavsson CG, Moller H, Frennby B, Bruze M (2005) Contact allergy to gold in patients with gold-plated intracoronary stents. Contact Derm 52(4):192–196. https://doi.org/10.1111/j.0105-1873.2005.00522.x

    Article  CAS  Google Scholar 

  10. Svedman C, Ekqvist S, Moller H, Bjork J, Pripp CM, Gruvberger B, Holmstrom E, Gustavsson CG, Bruze M (2009) A correlation found between contact allergy to stent material and restenosis of the coronary arteries. Contact Dermatitis 60(3):158–164. https://doi.org/10.1111/j.1600-0536.2008.01502.x

    Article  PubMed  Google Scholar 

  11. Sun WD, Li S, Yang XY, Ling MX, Ding X, Duan LA, Zhan MZ, Zhang H, Fan WM (2013) Large-scale gold mineralization in eastern China induced by an early cretaceous clockwise change in Pacific plate motions. Int Geol Rev 55(3):311–321. https://doi.org/10.1080/00206814.2012.698920

    Article  Google Scholar 

  12. Nordberg GF, Fowler BA, Nordberg M (2014) Handbook on the toxicology of metals. Academic Press

  13. Kabata-Pendias A (2010) Trace elements in soils and plants. CRC press

  14. Zereini F, Alt F, Messerschmidt J, von Bohlen A, Liebl K, Puttmann W (2004) Concentration and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter in Frankfurt am Main, Germany. Environ Sci Technol 38(6):1686–1692

    Article  CAS  PubMed  Google Scholar 

  15. Zereini F, Wiseman C, Puttmann W (2007) Changes in palladium, platinum, and rhodium concentrations, and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environ Sci Technol 41(2):451–456. https://doi.org/10.1021/es061453s

    Article  CAS  PubMed  Google Scholar 

  16. Gebel T, Lantzsch H, Plessow K, Dunkelberg H (1997) Genotoxicity of platinum and palladium compounds in human and bacterial cells. Mutat Res 389(2–3):183–190

    Article  CAS  PubMed  Google Scholar 

  17. Aull JL, Allen RL, Bapat AR, Daron HH, Friedman ME, Wilson JF (1979) The effects of platinum complexes on seven enzymes. Biochim Biophys Acta 571(2):352–358

    Article  CAS  PubMed  Google Scholar 

  18. Wiseman CL, Zereini F (2009) Airborne particulate matter, platinum group elements and human health: a review of recent evidence. Sci Total Environ 407(8):2493–2500. https://doi.org/10.1016/j.scitotenv.2008.12.057

    Article  CAS  PubMed  Google Scholar 

  19. Boyles R (1979) The geochemistry of gold and its deposits. Geological Survey of Canada Bulletin 280:1–584

    Google Scholar 

  20. Witkiewicz PL, Shaw CF (1981) Oxidative cleavage of peptide and protein disulfide bonds by gold(iii) - a mechanism for gold toxicity. Journal of the Chemical Society-Chemical Communications (21):1111–1114. https://doi.org/10.1039/c39810001111

  21. Karthikeyan S, Beveridge TJ (2002) Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. Environ Microbiol 4(11):667–675

    Article  CAS  PubMed  Google Scholar 

  22. Checa SK, Soncini FC (2011) Bacterial gold sensing and resistance. BioMetals 24(3):419–427. https://doi.org/10.1007/s10534-010-9393-2

    Article  CAS  PubMed  Google Scholar 

  23. Zhou D, Abdel-Fattah AI, Keller AA (2012) Clay particles destabilize engineered nanoparticles in aqueous environments. Environ Sci Technol 46(14):7520–7526. https://doi.org/10.1021/es3004427

    Article  CAS  PubMed  Google Scholar 

  24. Lima E, Guerra R, Lara V, Guzman A (2013) Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J 7(1):11. doi:Artn 11 https://doi.org/10.1186/1752-153x-7-11

  25. Abdul-Wahab S, Marikar F (2012) The environmental impact of gold mines: pollution by heavy metals. Open Engineering 2(2):304–313

    Article  CAS  Google Scholar 

  26. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wardle D, Ghani A (1995) Why is the strength of relationships between pairs of methods for estimating soil microbial biomass often so variable? Soil Biol Biochem 27(6):821–828

    Article  CAS  Google Scholar 

  28. Rosenberg B, Van Camp L, Grimley EB, Thomson AJ (1967) The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes. J Biol Chem 242(6):1347–1352

    Article  CAS  PubMed  Google Scholar 

  29. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(Pt 3):609–643. https://doi.org/10.1099/mic.0.037143-0

    Article  CAS  PubMed  Google Scholar 

  30. Gasic K, Korban SS (2006) Heavy metal stress. In: Physiology and molecular biology of stress tolerance in plants. Springer, pp 219–254

  31. Wang F, Yao J, Si Y, Chen H, Russel M, Chen K, Qian Y, Zaray G, Bramanti E (2010) Short-time effect of heavy metals upon microbial community activity. J Hazard Mater 173(1–3):510–516. https://doi.org/10.1016/j.jhazmat.2009.08.114

    Article  CAS  PubMed  Google Scholar 

  32. Piotrowska-Seget Z, Cycon M, Kozdroj J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28(3):237–246. https://doi.org/10.1016/j.apsoil.2004.08.001

    Article  Google Scholar 

  33. Varrica D, Dongarra G, Sabatino G, Monna F (2003) Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy. Environ Geol 44(2):222–230. https://doi.org/10.1007/s00254-002-0748-z

    Article  CAS  Google Scholar 

  34. Liu X, Chen G, Su C (2012) Influence of collector surface composition and water chemistry on the deposition of cerium dioxide nanoparticles: QCM-D and column experiment approaches. Environ Sci Technol 46(12):6681–6688. https://doi.org/10.1021/es300883q

    Article  CAS  PubMed  Google Scholar 

  35. Keshri J, Mankazana BBJ, Momba MNB (2015) Profile of bacterial communities in South African mine-water samples using Illumina next-generation sequencing platform. Appl Microbiol Biotechnol 99(7):3233–3242. https://doi.org/10.1007/s00253-014-6213-6

    Article  CAS  PubMed  Google Scholar 

  36. Gołębiewski M, Deja-Sikora E, Cichosz M, Tretyn A, Wróbel B (2014) 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb Ecol 67(3):635–647

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R (2016) Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: implications to bioremediation. J Hazard Mater 317:169–179. https://doi.org/10.1016/j.jhazmat.2016.05.066

    Article  CAS  PubMed  Google Scholar 

  38. Oorts K, Ghesquiere U, Smolders E (2007) Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride. Environ Toxicol Chem 26(6):1130–1138

    Article  CAS  PubMed  Google Scholar 

  39. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26(6):715–721. https://doi.org/10.1093/bioinformatics/btq041

    Article  CAS  PubMed  Google Scholar 

  41. Fisher WD (1958) On grouping for maximum homogeneity. J Am Stat Assoc 53(284):789–798. https://doi.org/10.2307/2281952

    Article  Google Scholar 

  42. Bueche M, Junier P (2016) Effect of organic carbon and metal accumulation on the bacterial communities in sulphidogenic sediments. Environ Sci Pollut Res 23(11):10443–10456. https://doi.org/10.1007/s11356-016-6056-z

    Article  CAS  Google Scholar 

  43. Zhang M, Huang F, Wang G, Liu X, Wen J, Zhang X, Huang Y, Xia Y (2017) Geographic distribution of cadmium and its interaction with the microbial community in the Longjiang River: risk evaluation after a shocking pollution accident. Sci Rep 7(1):227. https://doi.org/10.1038/s41598-017-00280-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta S, Kumar M, Kumar J, Ahmad V, Pandey R, Chauhan N (2017) Systemic analysis of soil microbiome deciphers anthropogenic influence on soil ecology and ecosystem functioning. Int J Environ Sci Technol:1–10

  45. Neyestani M (2016) Occurrence and proliferation of antibiotics and antibiotic resistance in wastewater treatment plants. University of Nevada, Las Vegas

    Google Scholar 

  46. Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101(2):501–509. https://doi.org/10.1016/j.biortech.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  47. Kandeler E, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23(3):299–306. https://doi.org/10.1007/s003740050174

    Article  CAS  Google Scholar 

  48. Reith F, Cornelis G (2017) Effect of soil properties on gold- and platinum nanoparticle mobility. Chem Geol 466:446–453. https://doi.org/10.1016/j.chemgeo.2017.06.033

    Article  CAS  Google Scholar 

  49. Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69(3):1800–1809. https://doi.org/10.1128/Aem.69.3.1800-1809.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brugger J, Etschmann B, Grosse C, Plumridge C, Kaminski J, Paterson D, Shar SS, Ta C, Howard DL, de Jonge MD (2013) Can biological toxicity drive the contrasting behavior of platinum and gold in surface environments? Chem Geol 343:99–110

    Article  CAS  Google Scholar 

  51. Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G, George GN, Nies DH, Mergeay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci U S A 106(42):17757–17762. https://doi.org/10.1073/pnas.0904583106

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    Article  CAS  PubMed  Google Scholar 

  53. Monsieurs P, Moors H, Van Houdt R, Janssen PJ, Janssen A, Coninx I, Mergeay M, Leys N (2011) Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. BioMetals 24(6):1133–1151. https://doi.org/10.1007/s10534-011-9473-y

    Article  CAS  PubMed  Google Scholar 

  54. Fairbrother L, Etschmann B, Brugger J, Shapter J, Southam G, Reith F (2013) Biomineralization of gold in biofilms of Cupriavidus metallidurans. Environ Sci Technol 47(6):2628–2635. https://doi.org/10.1021/es302381d

    Article  CAS  PubMed  Google Scholar 

  55. Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):157–164. https://doi.org/10.1016/j.Chemosphere.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  56. Acosta-Navarrete YM, Leon-Marquez YL, Salinas-Herrera K, Jacome-Galarza IE, Meza-Carmen V, Ramirez-Diaz MI, Cervantes C (2014) Expression of the six chromate ion transporter homologues of Burkholderia xenovorans LB400. Microbiology 160(Pt 2):287–295. https://doi.org/10.1099/mic.0.073783-0

    Article  CAS  PubMed  Google Scholar 

  57. Guo JK, Ding YZ, Feng RW, Wang RG, Xu YM, Chen C, Wei XL, Chen WM (2015) Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China. Antonie Van Leeuwenhoek 107(6):1591–1598. https://doi.org/10.1007/s10482-015-0453-z

    Article  CAS  PubMed  Google Scholar 

  58. Rastogi G, Osman S, Vaishampayan PA, Andersen GL, Stetler LD, Sani RK (2010) Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Microb Ecol 59(1):94–108. https://doi.org/10.1007/s00248-009-9598-5

    Article  CAS  PubMed  Google Scholar 

  59. Bamborough L, Cummings SP (2009) The impact of increasing heavy metal stress on the diversity and structure of the bacterial and actinobacterial communities of metallophytic grassland soil. Biol Fertil Soils 45(3):273–280. https://doi.org/10.1007/s00374-008-0323-1

    Article  CAS  Google Scholar 

  60. Schmidt T, Schlegel HG (1989) Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial-wastes. FEMS Microbiol Ecol 62(5):315–328. https://doi.org/10.1111/j.1574-6968.1989.tb03386.x

    Article  CAS  Google Scholar 

  61. Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25. https://doi.org/10.1016/j.jenvman.2016.02.047

    Article  CAS  Google Scholar 

  62. Rajkumar M, Prasad MN, Swaminathan S, Freitas H (2013) Climate change driven plant-metal-microbe interactions. Environ Int 53:74–86. https://doi.org/10.1016/j.envint.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  63. Karelova E, Harichova J, Stojnev T, Pangallo D, Ferianc P (2011) The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site. Biologia 66(1):18–26. https://doi.org/10.2478/s11756-010-0145-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the following institutions for their contributions and support: Australian Research Council (ARC-FT100150200 to FR), the Dean of Scientific Research, King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Shahsavari.

Additional information

Frank Reith passed away during the preparation of the manuscript.

Supplementary Information

ESM 1

(DOCX 318 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shar, S., Reith, F., Ball, A.S. et al. Long-term Impact of Gold and Platinum on Microbial Diversity in Australian Soils. Microb Ecol 81, 977–989 (2021). https://doi.org/10.1007/s00248-020-01663-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01663-x

Keywords

Navigation