Skip to main content
Log in

Admissible Vectors and Hilbert Algebras

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Admissible vectors for unitary representations of locally compact groups are the basis for group frame and covariant coherent state expansions. Main tools in the study of admissible vectors have been Plancherel and central integral decompositions, of applicability only under certain separability and semifiniteness restrictions. In this work, we present a study of admissible vectors in terms of convolution Hilbert algebras valid for arbitrary unitary representations of general locally compact groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Given a von Neumann algebra \({\mathcal {M}}\) acting on a Hilbert space \({\mathcal {H}}\), if \(P\in {\mathcal {M}}\) is a projection, the reduced von Neumann algebra \({\mathcal {M}}_P\) is the set of all \(A\in {\mathcal {M}}\), such that \(PA=AP=A\). \({\mathcal {M}}_P\) is a von Neumann algebra on \(P{\mathcal {H}}\) and its commutant is the induced von Neumann algebra \([{\mathcal {M}}']_P\) whose elements are all the restrictions to \(P{\mathcal {H}}\) of elements of \({\mathcal {M}}'\).

  2. Recall that for a convex cone \({\mathfrak {P}}\) in \(L^2(G)\), the dual cone \({\mathfrak {P}}^\circ \) is defined by \({\mathfrak {P}}^\circ :=\{g\in L^2(G):(f|g)\ge 0 \text { for }f\in {\mathfrak {P}}\}\). If \({\mathfrak {P}}={\mathfrak {P}}^\circ \), then \({\mathfrak {P}}\) is called self-dual.

  3. Standard forms were introduced by Haagerup [22]. Every von Neumann algebra \({\mathcal {M}}\) can be represented on a Hilbert space \({\mathcal {H}}\) in which it is standard. In such standard form, every \(\omega \) in the predual \({\mathcal {M}}_*\) is of the form \(\omega =\omega _{\xi ,\eta }\), i.e., \(\omega (A)=\omega _{\xi ,\eta }(A):=(A\xi |\eta )_{\mathcal {H}}\), \(A\in {\mathcal {M}}\), for certain \(\xi ,\eta \in {\mathcal {H}}\); furthermore, every automorphism \(\alpha \) of \({\mathcal {M}}\) is implemented by a unique unitary operator U defined on \({\mathcal {H}}\), that is, \(\alpha (A)=UAU^*\), \(A\in {\mathcal {M}}\), such that \(UJ=JU\) and \(U{\mathfrak {P}}\subset {\mathfrak {P}}\). See also [36, Sect. IX.1].

References

  1. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Coherent states, wavelets, and their generalizations. Theoretical and Mathematical Physics, 2nd edn. Springer, New York (2014)

    Book  Google Scholar 

  2. Ali, T.S., Führ, H., Krasowska, A.E.: Plancherel inversion as unified approach to wavelet transforms and Wigner functions. Ann. Henri Poincaré 4(6), 1015–1050 (2003)

    Article  MathSciNet  Google Scholar 

  3. Ambrose, W.: The \(L_2\)-system of a unimodular group. I. Trans. Am. Math. Soc. 65, 27–48 (1949)

    MATH  Google Scholar 

  4. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  5. Barbieri, D., Hernández, E., Parcet, J.: Riesz and frame systems generated by unitary actions of discrete groups. Appl. Comput. Harmon. Anal. 39(3), 369–399 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bekka, B.: Square integrable representations, von Neumann algebras and an application to Gabor analysis. J. Fourier Anal. Appl. 10(4), 325–349 (2004)

    Article  MathSciNet  Google Scholar 

  7. Bratteli, O., Robinson, D. W.: Operator algebras and quantum statistical mechanics. 1.\(C^*\)- and\(W^*\)-algebras, symmetry groups, decomposition of states, second ed. Texts and Monographs in Physics. Springer-Verlag, New York, (1987)

  8. Carey, A.L.: Square-integrable representations of non-unimodular groups. Bull. Aust. Math. Soc. 15(1), 1–12 (1976)

    Article  MathSciNet  Google Scholar 

  9. Carey, A.L.: Induced representations, reproducing kernels and the conformal group. Comm. Math. Phys. 52(1), 77–101 (1977)

    Article  MathSciNet  Google Scholar 

  10. Carey, A.L.: Group representations in reproducing kernel Hilbert spaces. Rep. Math. Phys. 14(2), 247–259 (1978)

    Article  MathSciNet  Google Scholar 

  11. Christensen, O.: Frames and bases. Applied and numerical harmonic analysis. An introductory course. Birkhäuser Boston, Inc., Boston, MA, (2008).

  12. Dixmier, J.: \(C^*\)-algebras. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977)

    MATH  Google Scholar 

  13. Duflo, M., Moore, C.C.: On the regular representation of a nonunimodular locally compact group. J. Funct. Anal. 21(2), 209–243 (1976)

    Article  MathSciNet  Google Scholar 

  14. Enock, M., Schwartz, J.-M.: Kac algebras and duality of locally compact groups. Springer, Berlin (1992)

    Book  Google Scholar 

  15. Eymard, P.: L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. France 92, 181–236 (1964)

    Article  MathSciNet  Google Scholar 

  16. Folland, G.B.: A course in abstract harmonic analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1995)

    MATH  Google Scholar 

  17. Führ, H.: Admissible vectors and traces on the commuting algebra. In Group 24: Physical and Mathematical Aspects of Symmetries, vol. 173 of Institute of Physics Conference Series. IOP Publishing, London, UK, (2003), pp. 867–874

  18. Führ, H.: Abstract harmonic analysis of continuous wavelet transforms. Lecture Notes in Mathematics, vol. 1863. Springer, Berlin (2005)

  19. Gilmore, R.: Geometry of symmetrized states. Ann. Phys. 74, 391–463 (1972)

    Article  MathSciNet  Google Scholar 

  20. Godement, R.: Les fonctions de type positif et la théorie des groupes. Trans. Am. Math. Soc. 63, 1–84 (1948)

    MATH  Google Scholar 

  21. Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations. I. Gen. Results. J. Math. Phys. 26(10), 2473–2479 (1985)

    MathSciNet  MATH  Google Scholar 

  22. Haagerup, U.: The standard form of von Neumann algebras. Math. Scand. 37(2), 271–283 (1975)

    Article  MathSciNet  Google Scholar 

  23. Han, D., Larson, D. R.: Frames, bases and group representations. Mem. Amer. Math. Soc. 147, 697 (2000), x+94

  24. Kadison, R. V., Ringrose, J. R.: Fundamentals of the theory of operator algebras. Vol. I. Elementary theory, vol. 100 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, (1983)

  25. Kadison, R. V., Ringrose, J. R.: Fundamentals of the theory of operator algebras. Vol. II. Advanced theory, vol. 100 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, (1986)

  26. Perdrizet, F.: Éléments positifs relatifs à une algèbre hilbertienne à gauche. Compos. Math. 23, 25–47 (1971)

    MathSciNet  MATH  Google Scholar 

  27. Perelomov, A.M.: Coherent states for arbitrary Lie group. Comm. Math. Phys. 26, 222–236 (1972)

    Article  MathSciNet  Google Scholar 

  28. Perelomov, A.M.: Generalized coherent states and their applications. Texts and Monographs in Physics. Springer, Berlin (1986)

    Book  Google Scholar 

  29. Phillips, J.: Positive integrable elements relative to a left Hilbert algebra. J. Funct. Anal. 13, 390–409 (1973)

    Article  MathSciNet  Google Scholar 

  30. Phillips, J.: A note on square-integrable representations. J. Funct. Anal. 20(1), 83–92 (1975)

    Article  MathSciNet  Google Scholar 

  31. Rieffel, M.A.: Square-integrable representations of Hilbert algebras. J. Functi. Anal. 3, 265–300 (1969)

    Article  MathSciNet  Google Scholar 

  32. Rieffel, M.A.: Integrable and proper actions on \(C^*\)-algebras, and square-integrable representations of groups. Expo. Math. 22(1), 1–53 (2004)

    Article  MathSciNet  Google Scholar 

  33. Segal, I. E.: An extension of Plancherel’s formula to separable unimodular groups. Ann. of Math. (2) 52, 272–292 (1950)

  34. Stetkær, H.: Representations, convolution square roots and spherical vectors. J. Funct. Anal. 252(1), 1–33 (2007)

    Article  MathSciNet  Google Scholar 

  35. Takesaki, M.: Tomita’s theory of modular Hilbert algebras and its applications. Lecture Notes in Mathematics, vol. 128. Springer, Berlin-New York (1970)

  36. Takesaki, M.: Theory of operator algebras. II, vol. 125 of Encyclopaedia of Mathematical Sciences. Springer, Berlin, (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gómez-Cubillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by research project MTM2014-57129-C2-1-P (Secretaría General de Ciencia, Tecnología e Innovación, Ministerio de Economía y Competitividad, Spain).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Cubillo, F., Wickramasekara, S. Admissible Vectors and Hilbert Algebras. Mediterr. J. Math. 18, 16 (2021). https://doi.org/10.1007/s00009-020-01687-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01687-0

Keywords

Mathematics Subject Classification

Navigation