Skip to main content
Log in

Temperature-Dependent Magnetoresistance in Polycrystalline Ni81Fe19 Thin Film on Si (100)

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetoresistance (MR) in thin films stems from different types of scattering mechanism present in the film. We report a systematic study of the temperature-dependent magnetoresistance behaviour in the pulsed DC magnetron sputtered Ni81Fe19 thin film on Si (100). X-ray diffraction study reveals the polycrystalline nature of the film along with the presence of preferred orientation. X-ray reflectivity measurement shows very low interface roughness (0.55 ± 0.04 nm). Temperature-dependent resistivity measurement is performed over a temperature range of 25–300 K, unveiling the dominance of electron-magnon scattering and impurity scattering at lower temperature (25–250 K) and electron-phonon scattering at higher temperature (above 250 K). In the investigated temperature range (30–300 K), the MR magnitude is found to reduce from 0.97 to 0.51% with increment in measurement temperature from 30 to 300 K. This reduction is attributed to the enhancement in phonon scattering at higher temperatures, and relatively suppressed ordering influence of magnetic field at higher temperature due to higher thermal activation energy and impurity scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Dau, F.N., Baibich, F.P.M.N., Broto, J.M., Fert, A.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)

    Article  ADS  Google Scholar 

  2. Saurenbach, F., Binacash, W.Z.G., Grunberg, P.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnet interlayer exchange. Phys. Rev. B. 39(7), 4828–4830 (1989)

    Article  ADS  Google Scholar 

  3. Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. 54 A(3), 225–226 (1975). https://doi.org/10.1016/0375-9601(75)90174-7

    Article  ADS  Google Scholar 

  4. van Gorkom, R.P., Caro, J., Klapwijk, T.M., Radelaar, S.: Temperature and angular dependence of the anisotropic magnetoresistance in epitaxial Fe films. Phys. Rev. B. 63(13), 134432 (2001). https://doi.org/10.1103/PhysRevB.63.134432

    Article  ADS  Google Scholar 

  5. Mao, M., et al.: Characterization of ion beam and magnetron sputtered thin Ta/NiFe films. J. Appl. Phys. 85(8), 5780–5782 (1999). https://doi.org/10.1063/1.370124

    Article  ADS  Google Scholar 

  6. Mitchell, E.N., Haukaas, H.B., Bale, H.D., Streeper, J.B.: Compositional and thickness dependence of the ferromagnetic anisotropy in resistance of iron-nickel films. J. Appl. Phys. 35(9), 2604–2608 (1964). https://doi.org/10.1063/1.1713808

    Article  ADS  Google Scholar 

  7. Wang, S., Gao, T., Wang, C., He, J.: Studies of anisotropic magnetoresistance and magnetic property of Ni81Fe19 ultra-thin films with the lower base vacuum. J. Alloys Compd. 554, 405–407 (2013). https://doi.org/10.1016/j.jallcom.2012.12.004

    Article  Google Scholar 

  8. Lee, W.Y., Toney, M.F., Mauri, D.: High magnetoresistance in sputtered permalloy thin films through growth on seed layers of (Ni0.81Fe0.19)1-xCrx. IEEE Trans. Magn. 36(1), 381–385 (2000). https://doi.org/10.1109/20.822551

    Article  ADS  Google Scholar 

  9. Wu, P., Wang, F., Qiu, H., Pan, L., Tian, Y.: Effects of substrate temperature and annealing on the anisotropic magnetoresistive property of NiFe films. Rare Metals. 22(3), 202–205 (2003)

    Article  Google Scholar 

  10. Gudin, S.A., Solin, N.I.: Description of the colossal magnetoresistance of La1.2Sr1.8Mn2O7 based on the spin-polaron conduction mechanism in the ferromagnetic temperature range. J. Exp. Theor. Phys. 130(4), 543–548 (2020). https://doi.org/10.1134/S1063776120020120

    Article  ADS  Google Scholar 

  11. Gudin, S.A., Solin, N.I.: Description of the colossal magnetoresistance of La1.2Sr1.8Mn2O7 based on spin-polaron and orientation conductivity mechanisms in the paramagnetic temperature region. Phys. Solid State. 62(5), 756–760 (2020). https://doi.org/10.1134/S1063783420050091

    Article  ADS  Google Scholar 

  12. Gudin, S.A., Kurkin, M.I., Neifel’d, E.A., Korolev, A.V., Gapontseva, N.N., Ugryumova, N.A.: Evaluation of the effect of various mechanisms on the magnetoresistance of lanthanum manganites La0.85Sr0.15MnO3 with activation-type conductivity. J. Exp. Theor. Phys. 121(5), 878–884 (2015). https://doi.org/10.1134/S1063776115120079

    Article  ADS  Google Scholar 

  13. Barwal, V., et al.: Spin gapless semiconducting behavior in inverse Heusler Mn2-xCo1+xAl (0 <=x<=1.75) thin films. J. Magn. Magn. Mater. 518(5), 167404 (2021). https://doi.org/10.1016/j.jmmm.2020.167404

    Article  Google Scholar 

  14. Barwal, V., Husain, S., Gupta, N.K., Hait, S., Pandey, L., Chaudhary, S.: Structural and magneto-transport properties of co-sputtered MnAl thin films. J. Magn. Magn. Mater. 503, 166654 (2020). https://doi.org/10.1016/j.jmmm.2020.166654

    Article  Google Scholar 

  15. Behera, N., Kumar, A., Pandya, D.K., Chaudhary, S.: Anisotropic magnetic damping studies in β-Ta/2D-epitaxial-Py bilayers. J. Magn. Magn. Mater. 444, 256–262 (2017). https://doi.org/10.1016/j.jmmm.2017.08.031

    Article  ADS  Google Scholar 

  16. Kudrnovský, J., Drchal, V., Bruno, P.: Magnetic properties of fcc Ni-based transition metal alloys. Phys. Rev. B. 77(22), 224422 (2008). https://doi.org/10.1103/PhysRevB.77.224422

    Article  ADS  Google Scholar 

  17. Martin, J.M.S., Schoen, A.W., Lucassen, J., Nembach, H.T., Koopmans, B., Silva, T.J., Back, C.H.: Magnetic properties in ultrathin 3d transition-metal binary alloys . II . Experimental verification of quantitative theories of damping and spin pumping. Phys. Rev. B. 95, (2017). https://doi.org/10.1103/PhysRevB.95.134411

  18. Barwal, V., Husain, S., Behera, N., Goyat, E., Chaudhary, S.: Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films. J. Appl. Phys. 123(5), 053901 (2018). https://doi.org/10.1063/1.5004425

    Article  ADS  Google Scholar 

  19. Patra, N., et al.: Effect of growth temperature on the structural and magnetic properties of the pulsed laser deposited Co2FeAl thin films. J. Alloys Compd. 779, 648–659 (2019). https://doi.org/10.1016/j.jallcom.2018.11.246

    Article  Google Scholar 

  20. Schoen, M.A.W., et al.: Magnetic properties of ultrathin 3d transition-metal binary alloys. I. Spin and orbital moments, anisotropy, and confirmation of Slater-Pauling behavior. Phys. Rev. B. 95(13), 134410 (2017). https://doi.org/10.1103/PhysRevB.95.134410

    Article  ADS  Google Scholar 

  21. Kateb, M., Gudmundsson, J.T., Ingvarsson, S.: Effect of atomic ordering on the magnetic anisotropy of single crystal Ni80Fe20. AIP Adv. 9(3), 035308 (2019). https://doi.org/10.1063/1.5088602

    Article  ADS  Google Scholar 

  22. Gabor, M.S., Belmeguenai, M., Petrisor, T., Ulhaq-Bouillet, C., Colis, S., Tiusan, C.: Correlations between structural, electronic transport, and magnetic properties of Co2FeAl0.5Si0.5 Heusler alloy epitaxial thin films. Phys. Rev. B - Condens. Matter Mater. Phys. 92(5), 054433 (2015). https://doi.org/10.1103/PhysRevB.92.054433

    Article  ADS  Google Scholar 

  23. Husain, S., Kumar, A., Akansel, S., Svedlindh, P., Chaudhary, S.: Anomalous Hall effect in ion-beam sputtered Co2FeAl full Heusler alloy thin films. J. Magn. Magn. Mater. 442, 288–294 (2017). https://doi.org/10.1016/j.jmmm.2017.06.127

    Article  ADS  Google Scholar 

  24. S. Kasap, C. Koughia, H. Ruda, and R. Johanson, Electrical conduction in metals and semiconductors. (2007)

  25. Goodings, D.A.: Electrical resistivity of ferromagnets at low temperatures. J. Appl. Phys. 34(4), 1370–1371 (1963). https://doi.org/10.1063/1.1729515

    Article  ADS  Google Scholar 

  26. Volkenshtein, N.V., Dyakina, V.P., Startsev, V.E.: Scattering mechanisms of conduction electrons in transition metals at low temperatures. Phys. Status Solidi. 57(1), 9–42 (1973). https://doi.org/10.1002/pssb.2220570102

    Article  Google Scholar 

  27. Jackson, T.J., Palmer, S.B., Blythe, H.J., Halim, A.S.: Giant magnetoresistance in granular cobalt copper thin films prepared by pulsed laser ablation deposition. J. Magn. Magn. Mater. 159(1–2), 269–281 (1996). https://doi.org/10.1016/0304-8853(95)00648-6

    Article  ADS  Google Scholar 

  28. Kaushalya, S., Husain, V., Barwal, N.K., Gupta, S.H., Chaudhary, S.: Tunable magnetic anisotropy in obliquely sputtered Co60Fe40 thin films on Si(100). Phys. B Condens. Matter. 570(May), 1–5 (2019). https://doi.org/10.1016/j.physb.2019.05.013

    Article  ADS  Google Scholar 

  29. Wang, W., et al.: Spin-valve effect in NiFe/MoS2/NiFe junctions. Nano Lett. 15(8), 5261–5267 (2015). https://doi.org/10.1021/acs.nanolett.5b01553

    Article  ADS  Google Scholar 

  30. Åkerman, J.J., Roshchin, I.V., Slaughter, J.M., Dave, R.W., Schuller, I.K.: Origin of temperature dependence in tunneling magnetoresistance. Europhys. Lett. 63(1), 104–110 (2003). https://doi.org/10.1209/epl/i2003-00484-4

    Article  ADS  Google Scholar 

  31. Iqbal, M.Z., Iqbal, M.W., Siddique, S., Khan, M.F., Ramay, S.M.: Room temperature spin valve effect in NiFe/WS2/Co junctions. Sci. Rep. 6(1), 21038 (2016). https://doi.org/10.1038/srep21038

    Article  ADS  Google Scholar 

  32. Xu, L., et al.: Magnetoresistance effect in NiFe/BP/NiFe vertical spin valve devices. Adv. Condens. Matter Phys. 9042823, 1–6 (2017). https://doi.org/10.1155/2017/9042823

    Article  Google Scholar 

Download references

Acknowledgements

S. Hait acknowledges the Ministry of Education, Government of India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujeet Chaudhary.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hait, S., Barwal, V., Gupta, N.K. et al. Temperature-Dependent Magnetoresistance in Polycrystalline Ni81Fe19 Thin Film on Si (100). J Supercond Nov Magn 34, 845–850 (2021). https://doi.org/10.1007/s10948-020-05783-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05783-w

Keywords

Navigation